Deep Reinforcement Learning for Addressing Disruptions in Traffic Light Control

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md Noor, Yung-Wey Chong
{"title":"Deep Reinforcement Learning for Addressing Disruptions in Traffic Light Control","authors":"Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md Noor, Yung-Wey Chong","doi":"10.32604/cmc.2022.022952","DOIUrl":null,"url":null,"abstract":": This paper investigates the use of multi-agent deep Q-network (MADQN) to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning (MARL) approach. The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions, particularly rainfall. MADQN is based on deep Q-network (DQN), which is an integration of the traditional reinforcement learning (RL) and the newly emerging deep learning (DL) approaches. MADQN enables traffic light controllers to learn, exchange knowledge with neighboring agents, and select optimal joint actions in a collaborative manner. A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia. Investigation is also performed using a grid traffic network (GTN) to understand that the proposed scheme is effective in a traditional traffic network. Our proposed scheme is evaluated using two simulation tools, namely Matlab and Simulation of Urban Mobility (SUMO). Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30% in the simulations.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"7 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.022952","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

: This paper investigates the use of multi-agent deep Q-network (MADQN) to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning (MARL) approach. The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions, particularly rainfall. MADQN is based on deep Q-network (DQN), which is an integration of the traditional reinforcement learning (RL) and the newly emerging deep learning (DL) approaches. MADQN enables traffic light controllers to learn, exchange knowledge with neighboring agents, and select optimal joint actions in a collaborative manner. A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia. Investigation is also performed using a grid traffic network (GTN) to understand that the proposed scheme is effective in a traditional traffic network. Our proposed scheme is evaluated using two simulation tools, namely Matlab and Simulation of Urban Mobility (SUMO). Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30% in the simulations.
用于解决交通灯控制中断的深度强化学习
本文研究了使用多智能体深度q -网络(MADQN)来解决传统多智能体强化学习(MARL)方法中出现的维数诅咒问题。建议的MADQN适用于多个交通繁忙和交通中断的十字路口的交通灯控制器,特别是降雨。MADQN基于深度q网络(deep Q-network, DQN),是传统强化学习(RL)和新兴深度学习(DL)方法的融合。MADQN使交通灯控制器能够以协作的方式学习、与相邻智能体交换知识,选择最优的联合行动。作为马来西亚吉隆坡双威城可持续城市项目的一部分,本文对一个真实的交通网络进行了案例研究。此外,本文还使用网格交通网络(GTN)进行了调查,以了解所提出的方案在传统交通网络中是否有效。我们提出的方案使用两个仿真工具进行评估,即Matlab和城市交通仿真(SUMO)。仿真结果表明,该方案可使车辆的累计延迟减少30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信