A New Albite Microanalytical Reference Material from Piz Beverin for Na, Al and Si Determination, and the Potential for New K-Feldspar Reference Materials
Julien M. Allaz, Marcel Guillong, Lorenzo Tavazzani, Georg Spiekermann, Lydia Zehnder, Emma Bullock, Joel DesOrmeau, Michael J. Jercinovic, Joachim Krause, Felix Marxer, William O. Nachlas, John Spratt
{"title":"A New Albite Microanalytical Reference Material from Piz Beverin for Na, Al and Si Determination, and the Potential for New K-Feldspar Reference Materials","authors":"Julien M. Allaz, Marcel Guillong, Lorenzo Tavazzani, Georg Spiekermann, Lydia Zehnder, Emma Bullock, Joel DesOrmeau, Michael J. Jercinovic, Joachim Krause, Felix Marxer, William O. Nachlas, John Spratt","doi":"10.1111/ggr.12515","DOIUrl":null,"url":null,"abstract":"<p>Determination of alkali elements is important to Earth scientists, yet suitable and reliable microanalytical reference materials are lacking. This paper proposes a new albite reference material and evaluates the potential for future K-feldspar reference materials. The proposed Piz Beverin albite reference material from Switzerland yields a homogeneous composition at the centimetre- to micrometre-scale for Si, Al and Na with < 2000 μg g<sup>-1</sup> total trace elements (mostly heterogeneously distributed Ca, K and Sr). EPMA and LA-ICP-MS measurements confirm a composition of 99.5(2)% albite component, which is supported further by bulk XRF measurements. A round robin evaluation involving nine independent EPMA laboratories confirms its composition and homogeneity for Si, Al and Na. In addition, a set of five distinct clear K-feldspar samples was evaluated as possible reference materials. The first two crystals of adular and orthoclase yield unacceptable inhomogeneities with > 2% relative local variations of Na, K and Ba contents. The three other investigated sets of K-feldspar crystals are yellow sanidine crystals from Itrongay (Madagascar). Despite distinct compositions, EPMA confirms they are each homogeneous at the centimetre to micrometre scale for Si, Al and K and have no apparent inclusions; further investigation to find larger amounts of these materials is therefore justified.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"47 4","pages":"907-929"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12515","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12515","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Determination of alkali elements is important to Earth scientists, yet suitable and reliable microanalytical reference materials are lacking. This paper proposes a new albite reference material and evaluates the potential for future K-feldspar reference materials. The proposed Piz Beverin albite reference material from Switzerland yields a homogeneous composition at the centimetre- to micrometre-scale for Si, Al and Na with < 2000 μg g-1 total trace elements (mostly heterogeneously distributed Ca, K and Sr). EPMA and LA-ICP-MS measurements confirm a composition of 99.5(2)% albite component, which is supported further by bulk XRF measurements. A round robin evaluation involving nine independent EPMA laboratories confirms its composition and homogeneity for Si, Al and Na. In addition, a set of five distinct clear K-feldspar samples was evaluated as possible reference materials. The first two crystals of adular and orthoclase yield unacceptable inhomogeneities with > 2% relative local variations of Na, K and Ba contents. The three other investigated sets of K-feldspar crystals are yellow sanidine crystals from Itrongay (Madagascar). Despite distinct compositions, EPMA confirms they are each homogeneous at the centimetre to micrometre scale for Si, Al and K and have no apparent inclusions; further investigation to find larger amounts of these materials is therefore justified.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.