Insights into Interaction of CO\(_2\) with N and B-doped Graphenes

Nguyen Thi Xuan Huynh, V. Chihaia, D. Son
{"title":"Insights into Interaction of CO\\(_2\\) with N and B-doped Graphenes","authors":"Nguyen Thi Xuan Huynh, V. Chihaia, D. Son","doi":"10.15625/0868-3166/16124","DOIUrl":null,"url":null,"abstract":"Graphene is a promising candidate for CO2 capture and storage. Doping graphene with other elements is an effective way to modify its CO2 storage ability. The literature has shown that the N and B doping could change the adsorption strength of CO2 on the graphene substrate. However, there is no research available to elucidate the adsorption sites and the physical properties underlying the interaction of CO2 with the N and B doped systems. Therefore, this paper is devoted to clarifying the current topic using the self-consistent van der Waals density functional theory calculations. The results showed that the N and B doping increases and decreases the adsorption energy of CO2, respectively. The reason is that there are more peaks of the electronic density of states of CO2 participating in the interaction with the N p orbital than with the B p orbital.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/16124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene is a promising candidate for CO2 capture and storage. Doping graphene with other elements is an effective way to modify its CO2 storage ability. The literature has shown that the N and B doping could change the adsorption strength of CO2 on the graphene substrate. However, there is no research available to elucidate the adsorption sites and the physical properties underlying the interaction of CO2 with the N and B doped systems. Therefore, this paper is devoted to clarifying the current topic using the self-consistent van der Waals density functional theory calculations. The results showed that the N and B doping increases and decreases the adsorption energy of CO2, respectively. The reason is that there are more peaks of the electronic density of states of CO2 participating in the interaction with the N p orbital than with the B p orbital.
CO \(_2\)与N和b掺杂石墨烯相互作用的研究
石墨烯是二氧化碳捕获和储存的一个很有前途的候选者。在石墨烯中掺杂其他元素是改善其CO2存储能力的有效途径。文献表明,N和B掺杂可以改变CO2在石墨烯衬底上的吸附强度。然而,目前还没有研究能够阐明二氧化碳与N和B掺杂体系相互作用的吸附位点和物理性质。因此,本文致力于利用自洽范德华密度泛函理论计算来澄清当前的主题。结果表明,N和B的掺杂分别提高和降低了CO2的吸附能。这是因为CO2参与与N p轨道相互作用的电子态密度峰比参与与B p轨道相互作用的电子态密度峰多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信