Holonomy invariants of links and nonabelian Reidemeister torsion

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2020-05-03 DOI:10.4171/QT/160
Calvin McPhail-Snyder
{"title":"Holonomy invariants of links and nonabelian Reidemeister torsion","authors":"Calvin McPhail-Snyder","doi":"10.4171/QT/160","DOIUrl":null,"url":null,"abstract":"We show that the reduced $\\mathrm{SL}_2(\\mathbb{C})$-twisted Burau representation can be obtained from the quantum group $\\mathcal{U}_q(\\mathfrak{sl}_2)$ for $q = i$ a fourth root of unity and that representations of $\\mathcal{U}_q(\\mathfrak{sl}_2)$ satisfy a type of Schur-Weyl duality with the Burau representation. As a consequence, the $\\operatorname{SL}_2(\\mathbb{C})$-twisted Reidemeister torsion of links can be obtained as a quantum invariant. Our construction is closely related to the quantum holonomy invariant of Blanchet, Geer, Patureau-Mirand, and Reshetikhin, and we interpret their invariant as a twisted Conway potential.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/160","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We show that the reduced $\mathrm{SL}_2(\mathbb{C})$-twisted Burau representation can be obtained from the quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$ for $q = i$ a fourth root of unity and that representations of $\mathcal{U}_q(\mathfrak{sl}_2)$ satisfy a type of Schur-Weyl duality with the Burau representation. As a consequence, the $\operatorname{SL}_2(\mathbb{C})$-twisted Reidemeister torsion of links can be obtained as a quantum invariant. Our construction is closely related to the quantum holonomy invariant of Blanchet, Geer, Patureau-Mirand, and Reshetikhin, and we interpret their invariant as a twisted Conway potential.
连杆的完整不变量与非abel Reidemeister扭转
我们证明了在量子群$\mathcal{U}_q(\mathfrak{SL}_2)$上,对于$q = i$一个单位的四次方根,可以得到$\mathcal{SL}_2(\ mathfrak{SL}_2)$的约简$\mathcal{SL}_2(\ mathfrak{SL}_2)$的表示满足一类具有Burau表示的Schur-Weyl对偶性。因此,$\operatorname{SL}_2(\mathbb{C})$-twisted的链路的Reidemeister扭转可以作为量子不变量得到。我们的构造与Blanchet、Geer、Patureau-Mirand和Reshetikhin的量子完整不变量密切相关,我们将他们的不变量解释为扭曲的康威势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信