Bayesian Risk Analysis for Length Biased Log Logistic Distribution Under Different Loss

Ranjita Pandey, Pulkit Srivastava, Danish Ali
{"title":"Bayesian Risk Analysis for Length Biased Log Logistic Distribution Under Different Loss","authors":"Ranjita Pandey, Pulkit Srivastava, Danish Ali","doi":"10.37398/jsr.2022.660333","DOIUrl":null,"url":null,"abstract":"The aim of this paper is parametric and reliability estimation for the two parameter length biased log-logistic distribution under squared error, generalized exponential, linear exponential and precautionary loss functions. Bayes estimates obtained under non informative priors through Lindleys approximation and through Markov Chain Monte Carlo are then compared with the classical parametric estimates. Bayesian risk analysis based on a simulated and a real data set are used to demonstrate application of the theoretic results.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37398/jsr.2022.660333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is parametric and reliability estimation for the two parameter length biased log-logistic distribution under squared error, generalized exponential, linear exponential and precautionary loss functions. Bayes estimates obtained under non informative priors through Lindleys approximation and through Markov Chain Monte Carlo are then compared with the classical parametric estimates. Bayesian risk analysis based on a simulated and a real data set are used to demonstrate application of the theoretic results.
不同损失下长度偏置Logistic分布的贝叶斯风险分析
本文的目的是在平方误差、广义指数函数、线性指数函数和预防损失函数下,对两参数长度有偏的对数-logistic分布进行参数估计和可靠性估计。然后将Lindleys近似和Markov链蒙特卡罗在无信息先验条件下得到的Bayes估计与经典参数估计进行比较。通过仿真和实际数据集的贝叶斯风险分析,验证了理论结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信