D. B. Needleman, H. Wagner, P. Altermatt, Z. Xiong, P. Verlinden, T. Buonassisi
{"title":"Characterizing and evaluating the impact of dislocations and grain boundaries on silicon solar cells","authors":"D. B. Needleman, H. Wagner, P. Altermatt, Z. Xiong, P. Verlinden, T. Buonassisi","doi":"10.1109/PVSC.2016.7750329","DOIUrl":null,"url":null,"abstract":"High efficiency and low-cost, low-capex silicon substrates are necessary for the PV industry to grow to meet climate-driven deployment targets. The efficiency gap between the best devices using low-cost, low-capex substrates and monocrystalline silicon produced by the Czochralski method (CZ-Si) have shrunk recently. Here, we present numerical device simulations that show that current crystal growth, phosphorus diffusion gettering, and hydrogen passivation can produce low-cost, low-capex silicon with an efficiency potential well over 20%. We further show that incorporating these materials into higher efficiency architectures that operate at higher injection is likely to further improve their performance.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":"78 1","pages":"3538-3542"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7750329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High efficiency and low-cost, low-capex silicon substrates are necessary for the PV industry to grow to meet climate-driven deployment targets. The efficiency gap between the best devices using low-cost, low-capex substrates and monocrystalline silicon produced by the Czochralski method (CZ-Si) have shrunk recently. Here, we present numerical device simulations that show that current crystal growth, phosphorus diffusion gettering, and hydrogen passivation can produce low-cost, low-capex silicon with an efficiency potential well over 20%. We further show that incorporating these materials into higher efficiency architectures that operate at higher injection is likely to further improve their performance.