R. Isoaho, A. Aho, A. Tukiainen, T. Aho, M. Raappana, T. Salminen, Jarno Reuna, M. Guina
{"title":"Narrow Bandgap Dilute Nitride Materials for 6-junction Space Solar Cells","authors":"R. Isoaho, A. Aho, A. Tukiainen, T. Aho, M. Raappana, T. Salminen, Jarno Reuna, M. Guina","doi":"10.1109/ESPC47532.2019.9049263","DOIUrl":null,"url":null,"abstract":"Narrow bandgap p-i-n dilute nitride GaInNAsSb junctions, for use as bottom cell in 6-junction solar cells, are reported. In particular, we demonstrate a high optical quality for GaInNAsSb junction with a bandgap ~0.78 eV, corresponding to a N content of 6.2%. Under AM0 illumination, such cell exhibits a photocurrent of 36.6 mA/cm2. By extracting the parameters of the experimental cell, we estimate the the AM0 efficiency of a 6-junction multijunction solar cell employing the GaInNAsSb junction, to attain a value of 33%. Further improvements are discussed towards achieving the full potential of the 6-junction design.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC47532.2019.9049263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Narrow bandgap p-i-n dilute nitride GaInNAsSb junctions, for use as bottom cell in 6-junction solar cells, are reported. In particular, we demonstrate a high optical quality for GaInNAsSb junction with a bandgap ~0.78 eV, corresponding to a N content of 6.2%. Under AM0 illumination, such cell exhibits a photocurrent of 36.6 mA/cm2. By extracting the parameters of the experimental cell, we estimate the the AM0 efficiency of a 6-junction multijunction solar cell employing the GaInNAsSb junction, to attain a value of 33%. Further improvements are discussed towards achieving the full potential of the 6-junction design.