S. Speakman, E. McFowland, S. Somanchi, Daniel B. Neill
{"title":"Scalable detection of irregular disease clusters using soft compactness constraints","authors":"S. Speakman, E. McFowland, S. Somanchi, Daniel B. Neill","doi":"10.3402/EHTJ.V4I0.11121","DOIUrl":null,"url":null,"abstract":"Introduction The spatial scan statistic (1) detects significant spatial clusters of disease by maximizing a likelihood ratio statistic F(S) over a large set of spatial regions, typically constrained by shape. The fast localized scan (2) enables scalable detection of irregular clusters by searching over proximity-constrained subsets of locations, using the linear-time subset scanning (LTSS) property to efficiently search over all subsets of each location and its k 1 nearest neighbors. However, for a fixed neighborhood size k, each of the 2 subsets are considered equally likely, and thus the fast localized scan does not take into account the spatial attributes of a subset. Hence, we wish to extend the fast localized scan by incorporating soft constraints, which give preference to spatially compact clusters while still considering all subsets within a given neighborhood.","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction The spatial scan statistic (1) detects significant spatial clusters of disease by maximizing a likelihood ratio statistic F(S) over a large set of spatial regions, typically constrained by shape. The fast localized scan (2) enables scalable detection of irregular clusters by searching over proximity-constrained subsets of locations, using the linear-time subset scanning (LTSS) property to efficiently search over all subsets of each location and its k 1 nearest neighbors. However, for a fixed neighborhood size k, each of the 2 subsets are considered equally likely, and thus the fast localized scan does not take into account the spatial attributes of a subset. Hence, we wish to extend the fast localized scan by incorporating soft constraints, which give preference to spatially compact clusters while still considering all subsets within a given neighborhood.