{"title":"Microbe-Based Synthesis of Gold Nanoparticles and its Catalytic Applications","authors":"Rakshi Anuja Dinesh, Srishti Raja, Nisha Kishanlal, Valli Nachiyar C, S. Sunkar","doi":"10.13005/bbra/3106","DOIUrl":null,"url":null,"abstract":"ABSTRACT: The application of microbes to synthesize metallic NPs is due to their increased capability to survive at maximum concentrations of metallic ions. The gold nanoparticles are used as the catalytic agent in the degradation of organic dyes, bioremediation, and antibacterial and antimicrobial effects. Despite the fact that the production of metal gold nanoparticles is relatively new, the relationships amongst microorganisms and metals have been thoroughly documented. In the subject of bioremediation, the capacity of bacteria to accumulate metals has also been acknowledged. Recently, the diversity of microorganisms has been used as factories for fabricating AuNPs both intracellularly and extracellularly. Microbial cells, upon treatment with gold salts, synthesize gold nanostructures, which are further isolated and purified using varied methodologies to acquire AuNPs. Control over the size and shape of AuNPs can be achieved by manoeuvring the main growth parameters.","PeriodicalId":9032,"journal":{"name":"Biosciences, Biotechnology Research Asia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosciences, Biotechnology Research Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bbra/3106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: The application of microbes to synthesize metallic NPs is due to their increased capability to survive at maximum concentrations of metallic ions. The gold nanoparticles are used as the catalytic agent in the degradation of organic dyes, bioremediation, and antibacterial and antimicrobial effects. Despite the fact that the production of metal gold nanoparticles is relatively new, the relationships amongst microorganisms and metals have been thoroughly documented. In the subject of bioremediation, the capacity of bacteria to accumulate metals has also been acknowledged. Recently, the diversity of microorganisms has been used as factories for fabricating AuNPs both intracellularly and extracellularly. Microbial cells, upon treatment with gold salts, synthesize gold nanostructures, which are further isolated and purified using varied methodologies to acquire AuNPs. Control over the size and shape of AuNPs can be achieved by manoeuvring the main growth parameters.