First-Principles Study on Adsorption and Decomposition of NOx on Mo (110) Surface

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Yunmi Huang, Hai-Jun Luo, C. Dong
{"title":"First-Principles Study on Adsorption and Decomposition of NOx on Mo (110) Surface","authors":"Yunmi Huang, Hai-Jun Luo, C. Dong","doi":"10.1155/2021/3264737","DOIUrl":null,"url":null,"abstract":"Based on the density functional theory, the adsorption and decomposition of NOx (x = 1, 2) on Mo (110) surface are studied with first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). The corresponding adsorption energies for the structures are −3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV, respectively. The preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively easy to dissociate on Mo (110) surface.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/3264737","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the density functional theory, the adsorption and decomposition of NOx (x = 1, 2) on Mo (110) surface are studied with first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). The corresponding adsorption energies for the structures are −3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV, respectively. The preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively easy to dissociate on Mo (110) surface.
Mo(110)表面吸附和分解NOx的第一性原理研究
基于密度泛函理论,用第一性原理计算研究了NOx (x = 1,2)在Mo(110)表面的吸附和分解。结果表明,NO2/Mo(110)的稳定结构为MoNO2 (T, μ1-N)、MoNO2 (H, μ3-N, O, O’)、MoNO2 (S, η2-O, O’)和MoNO2 (L, η2-O, O’)。相应的吸附能分别为−3.83 eV,−3.40 eV,−2.81 eV和−2.60 eV。NO/Mo(110)的稳定结构为MoNO (H, μ1-N)、MoNO (H, μ2-N, O)和MoNO (H, η - n),对应的吸附能分别为- 3.75 eV、- 3.57 eV和- 3.01 eV。N和O原子在Mo(110)表面的空穴位置易于吸附,其吸附能分别达到- 7.02 eV和- 7.70 eV。MoNO2 (H, μ3-N, O, O’)的较优分解过程表明,第一次和第二次脱氧过程分别需要克服0.11 eV和0.64 eV的能垒。这些结果表明NO2在Mo(110)表面相对容易解离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信