Coincident-point rigidity in normed planes

IF 0.6 3区 数学 Q3 MATHEMATICS
Sean Dewar, J. Hewetson, A. Nixon
{"title":"Coincident-point rigidity in normed planes","authors":"Sean Dewar, J. Hewetson, A. Nixon","doi":"10.26493/1855-3974.2826.3dc","DOIUrl":null,"url":null,"abstract":"A bar-joint framework $(G,p)$ is the combination of a graph $G$ and a map $p$ assigning positions, in some space, to the vertices of $G$. The framework is rigid if every edge-length-preserving continuous motion of the vertices arises from an isometry of the space. We will analyse rigidity when the space is a (non-Euclidean) normed plane and two designated vertices are mapped to the same position. This non-genericity assumption leads us to a count matroid first introduced by Jackson, Kaszanitsky and the third author. We show that independence in this matroid is equivalent to independence as a suitably regular bar-joint framework in a normed plane with two coincident points; this characterises when a regular normed plane coincident-point framework is rigid and allows us to deduce a delete-contract characterisation. We then apply this result to show that an important construction operation (generalised vertex splitting) preserves the stronger property of global rigidity in normed planes and use this to construct rich families of globally rigid graphs when the normed plane is analytic.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"81 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2826.3dc","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A bar-joint framework $(G,p)$ is the combination of a graph $G$ and a map $p$ assigning positions, in some space, to the vertices of $G$. The framework is rigid if every edge-length-preserving continuous motion of the vertices arises from an isometry of the space. We will analyse rigidity when the space is a (non-Euclidean) normed plane and two designated vertices are mapped to the same position. This non-genericity assumption leads us to a count matroid first introduced by Jackson, Kaszanitsky and the third author. We show that independence in this matroid is equivalent to independence as a suitably regular bar-joint framework in a normed plane with two coincident points; this characterises when a regular normed plane coincident-point framework is rigid and allows us to deduce a delete-contract characterisation. We then apply this result to show that an important construction operation (generalised vertex splitting) preserves the stronger property of global rigidity in normed planes and use this to construct rich families of globally rigid graphs when the normed plane is analytic.
规范平面上的重合点刚性
条形连接框架$(G,p)$是图$G$和地图$p$的组合,在某些空间中,为$G$的顶点分配位置。如果每个保持边长的顶点的连续运动产生于空间的等距,则框架是刚性的。当空间是一个(非欧几里德)赋范平面并且两个指定的顶点映射到相同位置时,我们将分析刚性。这个非泛型假设将我们引向由Jackson、Kaszanitsky和第三位作者首先引入的计数矩阵。我们证明了该矩阵的独立性等价于具有两个重合点的规范平面上的适当正则杆节点框架的独立性;这表征了正则赋范平面重合点框架是刚性的,并允许我们推导出删除-收缩表征。然后,我们应用这一结果来证明一个重要的构造操作(广义顶点分裂)在赋范平面中保留了更强的全局刚性性质,并使用它来构造赋范平面解析时的全局刚性图的富族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信