{"title":"Data mining in predictive maintenance systems: A taxonomy and systematic review","authors":"Aurora Esteban, A. Zafra, Sebastián Ventura","doi":"10.1002/widm.1471","DOIUrl":null,"url":null,"abstract":"Predictive maintenance is a field of study whose main objective is to optimize the timing and type of maintenance to perform on various industrial systems. This aim involves maximizing the availability time of the monitored system and minimizing the number of resources used in maintenance. Predictive maintenance is currently undergoing a revolution thanks to advances in industrial systems monitoring within the Industry 4.0 paradigm. Likewise, advances in artificial intelligence and data mining allow the processing of a great amount of data to provide more accurate and advanced predictive models. In this context, many actors have become interested in predictive maintenance research, becoming one of the most active areas of research in computing, where academia and industry converge. The objective of this paper is to conduct a systematic literature review that provides an overview of the current state of research concerning predictive maintenance from a data mining perspective. The review presents a first taxonomy that implies different phases considered in any data mining process to solve a predictive maintenance problem, relating the predictive maintenance tasks with the main data mining tasks to solve them. Finally, the paper presents significant challenges and future research directions in terms of the potential of data mining applied to predictive maintenance.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"12 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1471","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 14
Abstract
Predictive maintenance is a field of study whose main objective is to optimize the timing and type of maintenance to perform on various industrial systems. This aim involves maximizing the availability time of the monitored system and minimizing the number of resources used in maintenance. Predictive maintenance is currently undergoing a revolution thanks to advances in industrial systems monitoring within the Industry 4.0 paradigm. Likewise, advances in artificial intelligence and data mining allow the processing of a great amount of data to provide more accurate and advanced predictive models. In this context, many actors have become interested in predictive maintenance research, becoming one of the most active areas of research in computing, where academia and industry converge. The objective of this paper is to conduct a systematic literature review that provides an overview of the current state of research concerning predictive maintenance from a data mining perspective. The review presents a first taxonomy that implies different phases considered in any data mining process to solve a predictive maintenance problem, relating the predictive maintenance tasks with the main data mining tasks to solve them. Finally, the paper presents significant challenges and future research directions in terms of the potential of data mining applied to predictive maintenance.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.