Xingyu Chen , Peng Wang , Ziying Feng , Yanyan Liu , Miao Cui , Changgong Meng , Yifu Zhang
{"title":"Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors","authors":"Xingyu Chen , Peng Wang , Ziying Feng , Yanyan Liu , Miao Cui , Changgong Meng , Yifu Zhang","doi":"10.1016/j.asems.2022.100013","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, ammonium-ion (NH<sub>4</sub><sup>+</sup>) storage is in a booming stage in aqueous energy storage systems due to its multitudinous merits. To seek suitable electrode materials with excellent NH<sub>4</sub><sup>+</sup>-storage is still in the exploratory stage and full of challenge. Herein, an inorganic-polymer hybrid, poly(3,4-ethylenedioxithiophene) (PEDOT) intercalated hydrated vanadium oxide (VOH), named as VOH/PEDOT, is developed to tune the structure of VOH for boosting NH<sub>4</sub><sup>+</sup> storage. By the intercalation of PEDOT, the interlayer space of VOH is increased from 11.5 Å to 14.2 Å, which notably facilitates the rapid transport of electrons and charges between layers and improves the electrochemical properties for NH<sub>4</sub><sup>+</sup> storage. The achieved performances are much better than progressive NH<sub>4</sub><sup>+</sup> hosting materials. In addition, the concentration of polyvinyl alcohol/ammonium chloride (PVA/NH<sub>4</sub>Cl) electrolyte exerts a great impact on the NH<sub>4</sub><sup>+</sup> storage in VOH/PEDOT. The VOH/PEDOT electrode delivers specific capacitance of 327 F g<sup>−1</sup> in 1 M PVA/NH<sub>4</sub>Cl electrolyte at −0.2–1 V. Furthermore, the quasi-solid-state VOH/PEDOT//active carbon hybrid supercapacitor (QSS VOH/PEDOT//AC HSC) device is assembled for NH<sub>4</sub><sup>+</sup> storage, and it exhibits the capacitance of 328 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup>. The energy density of QSS VOH/PEDOT//AC NH<sub>4</sub><sup>+</sup>-HSC can reach 2.9 Wh m<sup>−2</sup> (2.6 mWh cm<sup>−3</sup>, 10.4 Wh kg<sup>−1</sup>) at 1 W m<sup>−2</sup> (0.9 mWh cm<sup>−3</sup>, 35.7 W kg<sup>−1</sup>). This work not only proves that the PEDOT intercalation can boost the NH<sub>4</sub><sup>+</sup> storage capacity of vanadium oxides, but also provides a novel direction for the development of NH<sub>4</sub><sup>+</sup> storage materials.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 2","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000139/pdfft?md5=663b8c1d68b3510600fd1c4a5cbbd915&pid=1-s2.0-S2773045X22000139-main.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Recently, ammonium-ion (NH4+) storage is in a booming stage in aqueous energy storage systems due to its multitudinous merits. To seek suitable electrode materials with excellent NH4+-storage is still in the exploratory stage and full of challenge. Herein, an inorganic-polymer hybrid, poly(3,4-ethylenedioxithiophene) (PEDOT) intercalated hydrated vanadium oxide (VOH), named as VOH/PEDOT, is developed to tune the structure of VOH for boosting NH4+ storage. By the intercalation of PEDOT, the interlayer space of VOH is increased from 11.5 Å to 14.2 Å, which notably facilitates the rapid transport of electrons and charges between layers and improves the electrochemical properties for NH4+ storage. The achieved performances are much better than progressive NH4+ hosting materials. In addition, the concentration of polyvinyl alcohol/ammonium chloride (PVA/NH4Cl) electrolyte exerts a great impact on the NH4+ storage in VOH/PEDOT. The VOH/PEDOT electrode delivers specific capacitance of 327 F g−1 in 1 M PVA/NH4Cl electrolyte at −0.2–1 V. Furthermore, the quasi-solid-state VOH/PEDOT//active carbon hybrid supercapacitor (QSS VOH/PEDOT//AC HSC) device is assembled for NH4+ storage, and it exhibits the capacitance of 328 mF cm−2 at 1 mA cm−2. The energy density of QSS VOH/PEDOT//AC NH4+-HSC can reach 2.9 Wh m−2 (2.6 mWh cm−3, 10.4 Wh kg−1) at 1 W m−2 (0.9 mWh cm−3, 35.7 W kg−1). This work not only proves that the PEDOT intercalation can boost the NH4+ storage capacity of vanadium oxides, but also provides a novel direction for the development of NH4+ storage materials.