Iterative and doubling algorithms for Riccati-type matrix equations: A comparative introduction

Q1 Mathematics
Federico Poloni
{"title":"Iterative and doubling algorithms for Riccati-type matrix equations: A comparative introduction","authors":"Federico Poloni","doi":"10.1002/gamm.202000018","DOIUrl":null,"url":null,"abstract":"<p>We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of <i>doubling</i>: they construct the iterate <math>\n <mrow>\n <msub>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n </mrow></math> of another naturally-arising fixed-point iteration <span>(<i>X</i><sub><i>h</i></sub>)</span> via a sort of repeated squaring. The equations we consider are Stein equations <span><i>X</i> − <i>A</i><sup>∗</sup> <i>X A</i> = <i>Q</i></span>, Lyapunov equations <span><i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> + <i>Q</i> = 0</span>, discrete-time algebraic Riccati equations <span><i>X</i> = <i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i>(<i>I</i> + <i>G X</i>)<sup>−1</sup><i>A</i></span>, continuous-time algebraic Riccati equations <span><i>Q</i> + <i>A</i><sup>∗</sup> <i>X</i> + <i>X A</i> − <i>X G X</i> = 0</span>, palindromic quadratic matrix equations <span><i>A</i> + <i>Q Y</i> + <i>A</i><sup>∗</sup><i>Y</i><sup>2</sup> = 0</span>, and nonlinear matrix equations <span><i>X</i> + <i>A</i><sup>∗</sup> <i>X</i><sup>−1</sup><i>A</i> = <i>Q</i></span>. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of doubling: they construct the iterate Q k = X 2 k of another naturally-arising fixed-point iteration (Xh) via a sort of repeated squaring. The equations we consider are Stein equations X − A X A = Q, Lyapunov equations A X + X A + Q = 0, discrete-time algebraic Riccati equations X = Q + A X(I + G X)−1A, continuous-time algebraic Riccati equations Q + A X + X A − X G X = 0, palindromic quadratic matrix equations A + Q Y + AY2 = 0, and nonlinear matrix equations X + A X−1A = Q. We draw comparisons among these algorithms, highlight the connections between them and to other algorithms such as subspace iteration, and discuss open issues in their theory.

riccti型矩阵方程的迭代和加倍算法:比较介绍
我们回顾了李雅普诺夫和里卡蒂型方程的一系列算法,它们都是通过加倍的思想相互关联的:它们构造迭代Q k = X 2k另一个自然产生的不动点迭代(Xh)通过一种重复平方。我们考虑的方程是Stein方程X−A∗X A = Q, Lyapunov方程A * X + X A + Q = 0,离散时间代数Riccati方程X = Q + A∗X(I + G X)−1A,连续时间代数Riccati方程Q + A∗X + X A−X G X = 0,回文二次矩阵方程A + Q Y + A∗Y2 = 0,以及非线性矩阵方程X + A∗X−1A = Q。我们对这些算法进行了比较,强调了它们与其他算法(如子空间迭代)之间的联系,并讨论了它们理论中的开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信