Constructing modular categories from orbifold data

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2020-02-03 DOI:10.4171/qt/170
Vincentas Mulevičius, I. Runkel
{"title":"Constructing modular categories from orbifold data","authors":"Vincentas Mulevičius, I. Runkel","doi":"10.4171/qt/170","DOIUrl":null,"url":null,"abstract":"In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\\mathbb{A}$ in a modular fusion category $\\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\\mathbb{A}$ in $\\mathcal{C}$, we introduce a ribbon category $\\mathcal{C}_{\\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\\mathcal{C}_{\\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\\mathbb{A}$ is given by a simple commutative $\\Delta$-separable Frobenius algebra $A$ in $\\mathcal{C}$; (ii) when $\\mathbb{A}$ is an orbifold datum in $\\mathcal{C} = \\operatorname{Vect}$, built from a spherical fusion category $\\mathcal{S}$. We show that in case (i), $\\mathcal{C}_{\\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\\mathcal{S}$. The category $\\mathcal{C}_{\\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/170","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\mathbb{A}$ in a modular fusion category $\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\mathbb{A}$ in $\mathcal{C}$, we introduce a ribbon category $\mathcal{C}_{\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\mathcal{C}_{\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\mathbb{A}$ is given by a simple commutative $\Delta$-separable Frobenius algebra $A$ in $\mathcal{C}$; (ii) when $\mathbb{A}$ is an orbifold datum in $\mathcal{C} = \operatorname{Vect}$, built from a spherical fusion category $\mathcal{S}$. We show that in case (i), $\mathcal{C}_{\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\mathcal{S}$. The category $\mathcal{C}_{\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.
从轨道数据构造模块类别
在Carqueville et al., arXiv:1809.01483中,作为Reshetikhin-Turaev tqft的广义轨道构造的一部分,引入了模融合范畴$\mathcal{A}$中的轨道基准$\mathbb{A}$的概念。本文给出了$\mathcal{C}$中的一个简单的轨道基准$\mathbb{a}$,引入了一个带状范畴$\mathcal{C}_{\mathbb{a}}$,并证明了它也是一个模融合范畴。$\mathcal{C}_{\mathbb{A}}$的定义是由广义轨道折中的Wilson线的性质所激发的。我们详细地分析了两个例子:(i)当$\mathbb{A}$由一个简单交换$\Delta$-可分Frobenius代数$A$在$\mathcal{C}$中给出;(ii)当$\mathbb{A}$是$\mathcal{C} = \operatorname{Vect}$中的一个轨道基准时,从一个球面融合类别$\mathcal{S}$中构建。我们证明了在情形(i)下,$\mathcal{C}_{\mathbb{A}}$与$A$的局部模的范畴是带状等价的,在情形(ii)下,与$\mathcal{S}$的德林菲尔德中心是带状等价的。范畴$\mathcal{C}_{\mathbb{A}}$因此将这两个结构统一为一个代数设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信