{"title":"An application of Heun functions in the quantum mechanics of a constrained particle","authors":"A. Schmidt, Matheus E. Pereira","doi":"10.1063/5.0135385","DOIUrl":null,"url":null,"abstract":"Using the thin-layer quantization, we formulate the problem of a Schrödinger particle constrained to move along a coordinate surface of the bi-spherical coordinate system. In three-dimensional space, the free Schrödinger equation is not separable in this coordinate system. However, when we consider the equation for a particle constrained to a given surface, there are only two degrees of freedom. One has to introduce a geometrical potential to attach the particle to the surface. This well-known potential has two contributions: one from Gauss’ curvature and the other from the mean curvature. The Schrödinger equation leads to a general Heun equation. We solve it exactly and present the eigenfunctions and plots of the probability densities, and, as an application of this methodology, we study the problem of an electric charge propagating along these coordinate surfaces in the presence of a uniform magnetic field.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0135385","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Using the thin-layer quantization, we formulate the problem of a Schrödinger particle constrained to move along a coordinate surface of the bi-spherical coordinate system. In three-dimensional space, the free Schrödinger equation is not separable in this coordinate system. However, when we consider the equation for a particle constrained to a given surface, there are only two degrees of freedom. One has to introduce a geometrical potential to attach the particle to the surface. This well-known potential has two contributions: one from Gauss’ curvature and the other from the mean curvature. The Schrödinger equation leads to a general Heun equation. We solve it exactly and present the eigenfunctions and plots of the probability densities, and, as an application of this methodology, we study the problem of an electric charge propagating along these coordinate surfaces in the presence of a uniform magnetic field.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.