K. C. Meehan, C. Kowalski, K. Bartlett, I-Hsien Li, Paul Bembia
{"title":"Successful complete digestion of well lithified shale and extraction of microfossils from Devonian beds in western New York","authors":"K. C. Meehan, C. Kowalski, K. Bartlett, I-Hsien Li, Paul Bembia","doi":"10.29041/STRAT.17.3.205-212","DOIUrl":null,"url":null,"abstract":"Researchers in paleontological and paleoecological sciences often need complete disaggregation of rock materials for certain lines of investigation. However, complete disaggregation of more lithified sedimentary rock is known to be problematic. A complete shale disaggregation method implementing quaternary ammonium surfactants, widely used in paleontological sciences for poorly lithified shale and mudstone, was successfully used on well lithified Devonian shale in the Appalachian Basin of Western New York. Over 50 Devonian gray and black shale samples were collected from multiple localities in western New York (Cashaqua, Rhinestreet, Skaneateles, Windom, and Ludlowville), coarsely crushed, and fully immersed in a quaternary ammonium surfactant until complete disaggregation was achieved (5–14 days); aliquots were run through a series of nested sieves. The sieved sediments contained hundreds of well-preserved microfossils released from the shale: ostracods, dacryoconarids, and previously unreported palymorphs, charophytes, agglutinated foraminifera, miospores, and other microspherules. These microfossils were easily found within disaggregated and sieved samples but were unrecognizable on the shale surface and destroyed in prior investigations of whole rock thin sections. In addition to more traditional approaches, inclusion of this complete rock disaggregation method may assist in a more complete analysis of material, increase our understandings of ancient basin systems and have important implications on our understanding of the paleoecology during the Late Devonian marine biotic crises.","PeriodicalId":51180,"journal":{"name":"Stratigraphy","volume":"12 1","pages":"205-212"},"PeriodicalIF":0.9000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stratigraphy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.29041/STRAT.17.3.205-212","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Researchers in paleontological and paleoecological sciences often need complete disaggregation of rock materials for certain lines of investigation. However, complete disaggregation of more lithified sedimentary rock is known to be problematic. A complete shale disaggregation method implementing quaternary ammonium surfactants, widely used in paleontological sciences for poorly lithified shale and mudstone, was successfully used on well lithified Devonian shale in the Appalachian Basin of Western New York. Over 50 Devonian gray and black shale samples were collected from multiple localities in western New York (Cashaqua, Rhinestreet, Skaneateles, Windom, and Ludlowville), coarsely crushed, and fully immersed in a quaternary ammonium surfactant until complete disaggregation was achieved (5–14 days); aliquots were run through a series of nested sieves. The sieved sediments contained hundreds of well-preserved microfossils released from the shale: ostracods, dacryoconarids, and previously unreported palymorphs, charophytes, agglutinated foraminifera, miospores, and other microspherules. These microfossils were easily found within disaggregated and sieved samples but were unrecognizable on the shale surface and destroyed in prior investigations of whole rock thin sections. In addition to more traditional approaches, inclusion of this complete rock disaggregation method may assist in a more complete analysis of material, increase our understandings of ancient basin systems and have important implications on our understanding of the paleoecology during the Late Devonian marine biotic crises.
期刊介绍:
The journal’s mission is to publish peer-reviewed papers that use modern stratigraphic tools – biostratigraphy, chemostratigraphy, magnetostratigraphy, cyclostratigraphy, sequence stratigraphy, climatostratigraphy, lithostratigraphy, GSSPs and more – to explore broad ideas in earth history.