R. Wilcox, Eric D. Huseman, Stacy Lin, Belinda O Darkwah, M. Emeje, K. Gamaniel, A. Orisadipe, N. Enwerem, B. Kefas, Rebecca J. Gryka, D. Simpson, S. Amos
{"title":"Evaluation of the Anticancer Activity of Bioactive Fraction G Extracted from Pavetta crassipes in Malignant Brain Tumor Cell Lines","authors":"R. Wilcox, Eric D. Huseman, Stacy Lin, Belinda O Darkwah, M. Emeje, K. Gamaniel, A. Orisadipe, N. Enwerem, B. Kefas, Rebecca J. Gryka, D. Simpson, S. Amos","doi":"10.21767/2321-2748.100329","DOIUrl":null,"url":null,"abstract":"Objective: Natural products have served as sources of lead compounds that are commonly used in the treatment of human diseases including cancer. Pavetta crassipes has been widely demonstrated to have ethnopharmacological potential in the management of malaria, gastrointestinal conditions, central nervous system behavioral disorders, hypertension, and cancer. The goal of our study was to evaluate the biological and molecular effects of Fraction G, obtained from the plant Pavetta crassipes, on glioblastoma invasive growth and survival. Methodology: The antiproliferative effects of Fraction G, obtained from Pavetta crassipes, was evaluated using the trypan blue exclusion, (3-(4, 5-Dimethylthiazol- 2yl)-2, 5-Diphenyltetrazolium Bromide; MTT), and lactate dehydrogenase (LDH) assays. Flow cytometry and Western blotting analyses were carried out to examine the effects of Fraction G on cell cycle check-points and its effects on epidermal growth factor receptor-mediated signaling of AKT and MAPK pathways. Results: In this paper, we report that the Fraction G obtained from the plant Pavetta crassipes induced a reduction in glioma cell viability and proliferation as well as induced an increase in apoptosis as evidenced by cleaved PARP, increased caspase 3/7 activity, and cell cycle arrest in the G0/G1 check point. Furthermore, we report that Fraction G inhibited the phosphorylation of AKT and MAPK following EGF treatment. Conclusion: Taken together, our results demonstrate that Fraction G has potent inhibitory effects on pathways involved in glioblastoma proliferation and survival.","PeriodicalId":7592,"journal":{"name":"American Journal of Phytomedicine and Clinical Therapeutics","volume":"37 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Phytomedicine and Clinical Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2321-2748.100329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Objective: Natural products have served as sources of lead compounds that are commonly used in the treatment of human diseases including cancer. Pavetta crassipes has been widely demonstrated to have ethnopharmacological potential in the management of malaria, gastrointestinal conditions, central nervous system behavioral disorders, hypertension, and cancer. The goal of our study was to evaluate the biological and molecular effects of Fraction G, obtained from the plant Pavetta crassipes, on glioblastoma invasive growth and survival. Methodology: The antiproliferative effects of Fraction G, obtained from Pavetta crassipes, was evaluated using the trypan blue exclusion, (3-(4, 5-Dimethylthiazol- 2yl)-2, 5-Diphenyltetrazolium Bromide; MTT), and lactate dehydrogenase (LDH) assays. Flow cytometry and Western blotting analyses were carried out to examine the effects of Fraction G on cell cycle check-points and its effects on epidermal growth factor receptor-mediated signaling of AKT and MAPK pathways. Results: In this paper, we report that the Fraction G obtained from the plant Pavetta crassipes induced a reduction in glioma cell viability and proliferation as well as induced an increase in apoptosis as evidenced by cleaved PARP, increased caspase 3/7 activity, and cell cycle arrest in the G0/G1 check point. Furthermore, we report that Fraction G inhibited the phosphorylation of AKT and MAPK following EGF treatment. Conclusion: Taken together, our results demonstrate that Fraction G has potent inhibitory effects on pathways involved in glioblastoma proliferation and survival.