Single-cell transcriptomics of lung organoids

Y. Song, Man Ryul Lee
{"title":"Single-cell transcriptomics of lung organoids","authors":"Y. Song, Man Ryul Lee","doi":"10.51335/ORGANOID.2021.1.E9","DOIUrl":null,"url":null,"abstract":"The in vitro application of human pluripotent stem cell- or adult stem cell-derived lung organoids has the potential to revolutionize lung disease research, but there are several limitations in the consistent implementation of lung organoids resulting from the structural diversity of the lung tissues and the variety of cell types (more than 40 resident cell types) populating these tissues. However, the evaluation of these complexities using a combination of lung organoids and single-cell transcriptomics has made it possible to identify several key cell types and sub-populations critical to the development of robust in vitro organoid models. Recent studies have started to use stem cells to produce these organoids, making it possible to mimic complex 3-dimensional tissues. Furthermore, single-cell mRNA sequencing allows critical comparisons of the transcriptome, which may help focus future research in the field of lung disease.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/ORGANOID.2021.1.E9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The in vitro application of human pluripotent stem cell- or adult stem cell-derived lung organoids has the potential to revolutionize lung disease research, but there are several limitations in the consistent implementation of lung organoids resulting from the structural diversity of the lung tissues and the variety of cell types (more than 40 resident cell types) populating these tissues. However, the evaluation of these complexities using a combination of lung organoids and single-cell transcriptomics has made it possible to identify several key cell types and sub-populations critical to the development of robust in vitro organoid models. Recent studies have started to use stem cells to produce these organoids, making it possible to mimic complex 3-dimensional tissues. Furthermore, single-cell mRNA sequencing allows critical comparisons of the transcriptome, which may help focus future research in the field of lung disease.
肺类器官的单细胞转录组学
体外应用人类多能干细胞或成体干细胞衍生的肺类器官有可能彻底改变肺部疾病的研究,但由于肺组织的结构多样性和填充这些组织的细胞类型(超过40种驻留细胞类型)的多样性,在肺类器官的一致实施方面存在一些限制。然而,利用肺类器官和单细胞转录组学的结合来评估这些复杂性使得鉴定出几种关键的细胞类型和亚群成为可能,这些细胞类型和亚群对于建立健全的体外类器官模型至关重要。最近的研究已经开始使用干细胞来制造这些类器官,使模拟复杂的三维组织成为可能。此外,单细胞mRNA测序允许对转录组进行关键的比较,这可能有助于将未来的研究重点放在肺部疾病领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信