Laser micro structuring of composite Li(Ni0.6Mn0.2Co0.2)O2 cathode layersfor lithium-ion batteries

J. Rakebrandt, Y. Zheng, H. Seifert, P. Smyrek, Wilhelm Pfleging
{"title":"Laser micro structuring of composite Li(Ni0.6Mn0.2Co0.2)O2 cathode layersfor lithium-ion batteries","authors":"J. Rakebrandt, Y. Zheng, H. Seifert, P. Smyrek, Wilhelm Pfleging","doi":"10.1109/3M-NANO.2017.8286297","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIB) using lithium nickel manganese cobalt oxide (Li(Nu/3Mn1/3Co1/3)O2, NMC-111) as cathode material have already become one of the most important types of mobile power sources due to their high gravimetric and volumetric capacity. Nevertheless, the automotive industry needs batteries with a further improved energy density to develop electric vehicles (EV) with comparable or even higher range than automobiles with ICE (Internal combustion engine). One approach to enhance the energy density is to increase the nickel content of the NMC cathode material. Therefore, NMC-622 cathodes were produced via tape casting containing 80 wt% of active material with a film thickness of 54 μm. The specific capacities were measured using galvanostatic measurements at different charging/discharging currents for cells with structured and unstructured electrodes. An improved lithium-ion diffusion kinetic due to an increased active surface area could be achieved by laser-assisted generation of three-dimensional architectures. Ultrafast laser ablation was used in order to avoid a thermal-induced damage of the active material. It could be shown that laser structuring of electrode material leads to a significant improvement of the electrochemical performance, especially at high charging and discharging currents.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"39 1","pages":"57-60"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lithium-ion batteries (LIB) using lithium nickel manganese cobalt oxide (Li(Nu/3Mn1/3Co1/3)O2, NMC-111) as cathode material have already become one of the most important types of mobile power sources due to their high gravimetric and volumetric capacity. Nevertheless, the automotive industry needs batteries with a further improved energy density to develop electric vehicles (EV) with comparable or even higher range than automobiles with ICE (Internal combustion engine). One approach to enhance the energy density is to increase the nickel content of the NMC cathode material. Therefore, NMC-622 cathodes were produced via tape casting containing 80 wt% of active material with a film thickness of 54 μm. The specific capacities were measured using galvanostatic measurements at different charging/discharging currents for cells with structured and unstructured electrodes. An improved lithium-ion diffusion kinetic due to an increased active surface area could be achieved by laser-assisted generation of three-dimensional architectures. Ultrafast laser ablation was used in order to avoid a thermal-induced damage of the active material. It could be shown that laser structuring of electrode material leads to a significant improvement of the electrochemical performance, especially at high charging and discharging currents.
锂离子电池用复合材料Li(Ni0.6Mn0.2Co0.2)O2正极层的激光微结构研究
以锂镍锰钴氧化物(Li(Nu/3Mn1/3Co1/3)O2, NMC-111)为正极材料的锂离子电池(LIB)由于具有较高的重量容量和体积容量,已成为最重要的移动电源类型之一。然而,汽车行业需要进一步提高能量密度的电池来开发与内燃机汽车相当甚至更高续航里程的电动汽车(EV)。提高能量密度的方法之一是提高NMC正极材料的镍含量。因此,NMC-622阴极是通过含有80 wt%活性物质的带铸造生产的,膜厚度为54 μm。在不同的充电/放电电流下,对结构电极和非结构电极的电池进行了恒流测量。由于活性表面积的增加,锂离子扩散动力学的改善可以通过激光辅助生成三维结构来实现。为了避免活性材料的热致损伤,采用了超快激光烧蚀。结果表明,电极材料的激光结构导致电化学性能的显著提高,特别是在高充放电电流下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信