A. Ratheesh, J. Rankin, E. Costa, E. Del Monte, A. Di Marco, S. Fabiani, F. La Monaca, F. Muleri, A. Rubini, P. Soffitta, L. Baldini, M. Minuti, M. Pinchera, C. Sgro’
{"title":"Polarization properties of X-ray tubes used for Imaging X-ray Polarimetry Explorer calibration","authors":"A. Ratheesh, J. Rankin, E. Costa, E. Del Monte, A. Di Marco, S. Fabiani, F. La Monaca, F. Muleri, A. Rubini, P. Soffitta, L. Baldini, M. Minuti, M. Pinchera, C. Sgro’","doi":"10.1117/1.JATIS.9.3.038002","DOIUrl":null,"url":null,"abstract":"Abstract. In this work, we measured the polarization properties of the X-rays emitted from the X-ray tubes, which were used during the calibration of the instrument onboard Imaging X-ray Polarimetry Explorer (IXPE). X-ray tubes are used as a source of unpolarized X-rays to calibrate the response of the gas pixel detectors to unpolarized radiation. However, even though the characteristic fluorescent emission lines are unpolarized, continuum bremsstrahlung emission can be polarized based on the geometry of the accelerated electrons and emitted photons. Hence, characterizing the contribution of polarized X-rays from bremsstrahlung emission is of interest, also for future measurements. We find that, when accelerated electrons are parallel to the emitted photons, the bremsstrahlung emission is unpolarized, and when they are perpendicular, the polarization increases with energy, as expected from the theoretical predictions. A comparison with the theoretical predictions is also shown.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.3.038002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. In this work, we measured the polarization properties of the X-rays emitted from the X-ray tubes, which were used during the calibration of the instrument onboard Imaging X-ray Polarimetry Explorer (IXPE). X-ray tubes are used as a source of unpolarized X-rays to calibrate the response of the gas pixel detectors to unpolarized radiation. However, even though the characteristic fluorescent emission lines are unpolarized, continuum bremsstrahlung emission can be polarized based on the geometry of the accelerated electrons and emitted photons. Hence, characterizing the contribution of polarized X-rays from bremsstrahlung emission is of interest, also for future measurements. We find that, when accelerated electrons are parallel to the emitted photons, the bremsstrahlung emission is unpolarized, and when they are perpendicular, the polarization increases with energy, as expected from the theoretical predictions. A comparison with the theoretical predictions is also shown.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.