{"title":"Measuring 3‐D plant growth using optical flow","authors":"J. Barron, A. Liptay","doi":"10.1002/1361-6374(199706)5:2<82::AID-BIO5>3.3.CO;2-6","DOIUrl":null,"url":null,"abstract":"A method is presented for measuring 3-D plant growth using the optical flow computed on an image sequence of a growing corn seedling. Each image in the sequence consists of two views of the same seedling; one view of the corn seedling is front-on while the second view is a orthogonal view (at 90°) of the seedling made by projecting the plant's orthogonal image onto a mirror oriented at 45° with respect to the camera. We compute 3-D velocity (motion) of the corn seedling's tip by using a simple extension of the 2-D motion constraint equation used in optical flow analysis. This method is an extension of the work presented by Barron and Liptay where optical flow was used to measure the 2-D growth (in the vertical plane) of a corn seedling.","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"98 1","pages":"82-86"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1361-6374(199706)5:2<82::AID-BIO5>3.3.CO;2-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
A method is presented for measuring 3-D plant growth using the optical flow computed on an image sequence of a growing corn seedling. Each image in the sequence consists of two views of the same seedling; one view of the corn seedling is front-on while the second view is a orthogonal view (at 90°) of the seedling made by projecting the plant's orthogonal image onto a mirror oriented at 45° with respect to the camera. We compute 3-D velocity (motion) of the corn seedling's tip by using a simple extension of the 2-D motion constraint equation used in optical flow analysis. This method is an extension of the work presented by Barron and Liptay where optical flow was used to measure the 2-D growth (in the vertical plane) of a corn seedling.