{"title":"Contour-Based Data Analysis: Loading Rate Dependence in Dynamic Catch of Integrin-Ligand Bonds","authors":"Xueyi Yang, Yue Xu, Chun Yang","doi":"10.32604/mcb.2019.07117","DOIUrl":null,"url":null,"abstract":": Cell-matrix interactions guide various cell behaviors, including proliferation, differentiation, migration, etc. Integrins, as a known transmembrane mechanosensor, undergo conformational changes in response to mechanical stimuli, and manipulate cell-matrix chemical-mechanical coupled signaling transduction [1]. The integrin-ligand bond kinetics has gain increasing attention among researchers. Independent studies showed that the integrin-ligand bond has been reported to be reinforced by the applied force f , while the loading rate df/dt had little effect on the bond lifetime [2]. We previously observed a dramatic increase in bond lifetime beyond a loading rate threshold for the integrin α2β1-DGEA bond, by introducing AFM (Atomic Force Microscopy) -based SCFS (single-cell force spectroscopy) and contour-based data analysis algorithm [3]. Here, we used AFM SMFS (single-molecule force spectroscopy)/SCFS [4] and contour-based data analysis to study the kinetic properties of α2β1-DGEA and α5β1-RGD bonds. Both bonds possessed loading-rate-dependent lifetimes on a molecular level and in living cells. In conclusion, with the help of AFM force spectroscopy and contour-based data analysis, we illustrated the complex relationship between the rupture force and the loading rate of the integrin-ligand bonds. At least two subunits of the integrin family showed loading-rate-dependent dynamic catch with their ligands. It worth more efforts on whether loading-rate-strengthened receptor-ligand bond is a general property of the integrin family.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.07117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
: Cell-matrix interactions guide various cell behaviors, including proliferation, differentiation, migration, etc. Integrins, as a known transmembrane mechanosensor, undergo conformational changes in response to mechanical stimuli, and manipulate cell-matrix chemical-mechanical coupled signaling transduction [1]. The integrin-ligand bond kinetics has gain increasing attention among researchers. Independent studies showed that the integrin-ligand bond has been reported to be reinforced by the applied force f , while the loading rate df/dt had little effect on the bond lifetime [2]. We previously observed a dramatic increase in bond lifetime beyond a loading rate threshold for the integrin α2β1-DGEA bond, by introducing AFM (Atomic Force Microscopy) -based SCFS (single-cell force spectroscopy) and contour-based data analysis algorithm [3]. Here, we used AFM SMFS (single-molecule force spectroscopy)/SCFS [4] and contour-based data analysis to study the kinetic properties of α2β1-DGEA and α5β1-RGD bonds. Both bonds possessed loading-rate-dependent lifetimes on a molecular level and in living cells. In conclusion, with the help of AFM force spectroscopy and contour-based data analysis, we illustrated the complex relationship between the rupture force and the loading rate of the integrin-ligand bonds. At least two subunits of the integrin family showed loading-rate-dependent dynamic catch with their ligands. It worth more efforts on whether loading-rate-strengthened receptor-ligand bond is a general property of the integrin family.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.