Trapped Charge Effect on Composite Lithium Niobate-Silicon Acoustoelectric Delay Lines

Hakhamanesh Mansoorzare, R. Abdolvand
{"title":"Trapped Charge Effect on Composite Lithium Niobate-Silicon Acoustoelectric Delay Lines","authors":"Hakhamanesh Mansoorzare, R. Abdolvand","doi":"10.1109/IFCS-ISAF41089.2020.9234933","DOIUrl":null,"url":null,"abstract":"Acoustoelectric delay lines (AEDL) fabricated on a composite lithium niobate-silicon (LN-Si) platform could enable acoustoelectric (AE) nonreciprocity and gain provided that the material properties of the LN-Si heterostructure are properly selected. Among such properties are the carrier density and mobility in the Si substrate. However, the bulk Si properties are subject to substantial perturbation at the LN-Si interface as a result of interfacial trapped charges at dislocations and dangling bond sites. The metal-insulator-semiconductor (MIS) capacitor inherently formed in such heterostructures, however, could allow for some level of control over the Si carrier distribution at the LN film interface. In this work, we demonstrate that the AE gain achieved by the momentum transfer from the carriers drifting in Si and the subsequent nonreciprocity could be fine-tuned and the efficiency of the device could be improved by utilizing the MIS capacitor. The device efficiency is found to be enhanced once the majority electron carriers in n-type Si are slightly depleted at the LN-Si interface resulting in ∼1.5 times improvement in the AE gain at a lower bias current, increasing the efficiency by ∼60%.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"12 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustoelectric delay lines (AEDL) fabricated on a composite lithium niobate-silicon (LN-Si) platform could enable acoustoelectric (AE) nonreciprocity and gain provided that the material properties of the LN-Si heterostructure are properly selected. Among such properties are the carrier density and mobility in the Si substrate. However, the bulk Si properties are subject to substantial perturbation at the LN-Si interface as a result of interfacial trapped charges at dislocations and dangling bond sites. The metal-insulator-semiconductor (MIS) capacitor inherently formed in such heterostructures, however, could allow for some level of control over the Si carrier distribution at the LN film interface. In this work, we demonstrate that the AE gain achieved by the momentum transfer from the carriers drifting in Si and the subsequent nonreciprocity could be fine-tuned and the efficiency of the device could be improved by utilizing the MIS capacitor. The device efficiency is found to be enhanced once the majority electron carriers in n-type Si are slightly depleted at the LN-Si interface resulting in ∼1.5 times improvement in the AE gain at a lower bias current, increasing the efficiency by ∼60%.
铌酸锂-硅复合声电延迟线的俘获电荷效应
在铌酸锂-硅(LN-Si)复合材料平台上制备的声电延迟线(AEDL),只要选择合适的LN-Si异质结构材料性质,就可以实现声电非互易和增益。其中的性质是载流子密度和迁移率在硅衬底。然而,由于位错和悬空键位上的界面捕获电荷,硅的体性质在LN-Si界面上受到了很大的扰动。然而,在这种异质结构中形成的金属-绝缘体-半导体(MIS)电容器可以在一定程度上控制LN薄膜界面上的Si载流子分布。在这项工作中,我们证明了通过在Si中漂移的载流子的动量转移和随后的非互易可以微调声发射增益,并且利用MIS电容器可以提高器件的效率。研究发现,一旦n型Si中的大多数电子载流子在LN-Si界面上被略微耗尽,器件效率就会提高,从而在较低的偏置电流下将AE增益提高约1.5倍,效率提高约60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信