Massimo Carraturo, Paul Hennig, Gianluca Alaimo, Leonhard Heindel, Ferdinando Auricchio, Markus Kästner, Alessandro Reali
{"title":"Additive manufacturing applications of phase-field-based topology optimization using adaptive isogeometric analysis","authors":"Massimo Carraturo, Paul Hennig, Gianluca Alaimo, Leonhard Heindel, Ferdinando Auricchio, Markus Kästner, Alessandro Reali","doi":"10.1002/gamm.202100013","DOIUrl":null,"url":null,"abstract":"In this contribution, we apply adaptive isogeometric analysis to a diffuse interface model for topology optimization. First, the influence of refinement and coarsening parameters on the optimization procedure are evaluated and discussed on a two‐dimensional problem and a possible workflow to convert smooth isogeometric solutions into 3D printed products is described. Second, to assess the required numerical accuracy of the proposed simulation framework, numerical results obtained adopting different stopping criteria are experimentally evaluated for a three‐dimensional benchmark problem.","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"44 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202100013","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
Abstract
In this contribution, we apply adaptive isogeometric analysis to a diffuse interface model for topology optimization. First, the influence of refinement and coarsening parameters on the optimization procedure are evaluated and discussed on a two‐dimensional problem and a possible workflow to convert smooth isogeometric solutions into 3D printed products is described. Second, to assess the required numerical accuracy of the proposed simulation framework, numerical results obtained adopting different stopping criteria are experimentally evaluated for a three‐dimensional benchmark problem.