A Voltage-Mode Sensing Scheme with Differential-Row Weight Mapping For Energy-Efficient RRAM-Based In-Memory Computing

W. Wan, R. Kubendran, B. Gao, Siddharth Josbi, Priyanka Raina, Huaqiang Wu, G. Cauwenberghs, H. Wong
{"title":"A Voltage-Mode Sensing Scheme with Differential-Row Weight Mapping For Energy-Efficient RRAM-Based In-Memory Computing","authors":"W. Wan, R. Kubendran, B. Gao, Siddharth Josbi, Priyanka Raina, Huaqiang Wu, G. Cauwenberghs, H. Wong","doi":"10.1109/VLSITechnology18217.2020.9265066","DOIUrl":null,"url":null,"abstract":"The energy efficiency of RRAM-based in-memory matrix-vector multiplication (MVM) depends largely on the output sensing mechanism. We design a novel voltage-mode sensing configuration with differential-row weight mapping that achieves a 3.6x improvement in energy per multiply-accumulate (MAC) at the same read voltage compared to current-mode sensing, and avoids the nonlinear source-line dynamics issue that occurs in conventional voltage-mode sensing. We verify the MVM performance of our scheme by performing measurements using a RRAM array monolithically integrated with CMOS voltage-mode neurons. We compare the effects of weight normalization on MVM accuracy under two different weight mapping schemes, and provide guidance in selecting the scheme based on weight sparsity and consistency of the L-1 weight norm across the columns.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"9 1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The energy efficiency of RRAM-based in-memory matrix-vector multiplication (MVM) depends largely on the output sensing mechanism. We design a novel voltage-mode sensing configuration with differential-row weight mapping that achieves a 3.6x improvement in energy per multiply-accumulate (MAC) at the same read voltage compared to current-mode sensing, and avoids the nonlinear source-line dynamics issue that occurs in conventional voltage-mode sensing. We verify the MVM performance of our scheme by performing measurements using a RRAM array monolithically integrated with CMOS voltage-mode neurons. We compare the effects of weight normalization on MVM accuracy under two different weight mapping schemes, and provide guidance in selecting the scheme based on weight sparsity and consistency of the L-1 weight norm across the columns.
一种基于差分行权映射的电压模式感知方案,用于高效的随机存储器内存计算
基于随机存储器的内存矩阵向量乘法(MVM)的能量效率很大程度上取决于输出感知机制。我们设计了一种具有差分行权映射的新型电压模式传感配置,与电流模式传感相比,在相同的读取电压下,每乘累积能量(MAC)提高了3.6倍,并避免了传统电压模式传感中出现的非线性源线动力学问题。我们通过使用与CMOS电压模式神经元单片集成的RRAM阵列进行测量来验证我们的方案的MVM性能。我们比较了两种不同权重映射方案下权值归一化对MVM精度的影响,并提供了基于权值稀疏性和跨列L-1权值范数一致性的方案选择指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信