CHF enhancement of Al2O3, TiO2 and Ag nanofluids and effect of nucleate pool boiling time

M. S. Ulcay
{"title":"CHF enhancement of Al2O3, TiO2 and Ag nanofluids and effect of nucleate pool boiling time","authors":"M. S. Ulcay","doi":"10.1109/ITHERM.2014.6892357","DOIUrl":null,"url":null,"abstract":"Nanofluids are nanometer sized suspended particles in water or other base fluids. They are used for their increased nucleate boiling critical heat flux (CHF) values far beyond compared to pure water or base fluid. Therefore pool boiling heat transfer tests are performed to understand increase in CHF. The pool boiling characteristics and critical heat flux enhancement using nanofluids of dilute dispersions of alumina, titania and silver are studied. High heat transfer rates with high critical heat flux achieved with modest nanoparticle concentrations (<;0.1% by volume). Heater wire used in CHF tests were only on 50μm in diameter. Change in surface structure of heater wire causes increase in CHF. Surface of the heater is covered with porous layer of nanoparticles during nucleate boiling. It is determined to investigate the effects of nucleate boiling time (coating time) during which the heater wire is exposed to deposition of nanoparticles. Results of this study presented that there is a non-linear relationship between the coating time and CHF for short periods of coating times, up to 30 seconds; however this effect loses its impact if the coating duration is elongated. It was also showed that longer periods of coating time increased the CHF but not drastically and the relationship between coating time and CHF is no longer non-linear and can be approximated by a linear line. This study represents an important step in understanding the relationship between CHF and the optimum amount of nanoparticle deposition or amount of porous layer of nanoparticles formed on heater surface with respect to nucleate boiling (coating)/time dependency.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"35 1 1","pages":"756-764"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Nanofluids are nanometer sized suspended particles in water or other base fluids. They are used for their increased nucleate boiling critical heat flux (CHF) values far beyond compared to pure water or base fluid. Therefore pool boiling heat transfer tests are performed to understand increase in CHF. The pool boiling characteristics and critical heat flux enhancement using nanofluids of dilute dispersions of alumina, titania and silver are studied. High heat transfer rates with high critical heat flux achieved with modest nanoparticle concentrations (<;0.1% by volume). Heater wire used in CHF tests were only on 50μm in diameter. Change in surface structure of heater wire causes increase in CHF. Surface of the heater is covered with porous layer of nanoparticles during nucleate boiling. It is determined to investigate the effects of nucleate boiling time (coating time) during which the heater wire is exposed to deposition of nanoparticles. Results of this study presented that there is a non-linear relationship between the coating time and CHF for short periods of coating times, up to 30 seconds; however this effect loses its impact if the coating duration is elongated. It was also showed that longer periods of coating time increased the CHF but not drastically and the relationship between coating time and CHF is no longer non-linear and can be approximated by a linear line. This study represents an important step in understanding the relationship between CHF and the optimum amount of nanoparticle deposition or amount of porous layer of nanoparticles formed on heater surface with respect to nucleate boiling (coating)/time dependency.
Al2O3、TiO2和Ag纳米流体的CHF增强及核池沸腾时间的影响
纳米流体是纳米大小的悬浮颗粒,存在于水或其他基础流体中。与纯水或基础流体相比,它们的核沸腾临界热流密度(CHF)值大大增加。因此,进行池沸腾传热试验来了解CHF的增加。研究了氧化铝、二氧化钛和银的稀分散纳米流体对池沸腾特性和临界热流密度的增强。在适度的纳米颗粒浓度(体积比< 0.1%)下,实现了具有高临界热流密度的高传热率。CHF试验中使用的加热丝直径仅为50μm。加热丝表面结构的改变导致CHF升高。在成核沸腾过程中,加热器表面覆盖有纳米颗粒多孔层。在加热丝暴露于纳米颗粒沉积的过程中,决定研究成核沸腾时间(涂层时间)的影响。研究结果表明,在短时间内(30秒以内),涂层时间与CHF呈非线性关系;然而,如果涂层持续时间延长,这种效果将失去其影响。延长涂层时间可以增加CHF,但增加幅度不大,涂层时间与CHF之间的关系不再是非线性的,可以用一条线性线来近似。这项研究代表了理解CHF与最佳纳米颗粒沉积量或加热器表面形成的纳米颗粒多孔层数量之间的关系,以及核沸腾(涂层)/时间依赖性的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信