Optimization of Photorefractive Polymers for Optical Processing

IF 1 Q4 QUANTUM SCIENCE & TECHNOLOGY
K. Meerholz
{"title":"Optimization of Photorefractive Polymers for Optical Processing","authors":"K. Meerholz","doi":"10.1364/qo.1997.qfc.3","DOIUrl":null,"url":null,"abstract":"Photorefractive materials have many potential photonic applications, including dynamic holographic storage and image processing. Recently, the new class of amorphous organic photorefractive materials has emerged, offering wide structural flexibility, easy processability, and low cost at very high performance levels. Progress in this field has led to absorption-limited complete diffraction for the readout of a hologram stored in materials of only 100-150 μm thickness and to extremely large net gain coefficients of more than 200 cm−1 compared to 40-50 cm−1 in the best inorganic photorefractive crystals known to date. These excellent properties occur in materials with low glass transition temperatures and result from refractive index modulations as large as Δn ≈ 10-2, mostly originating from a Kerr-type orientational birefringence rather than the electro-optic effect as in traditional photorefractive crystals. The materials can be adjusted for photorefractivity over the entire visible spectrum and in the near infrared. The sensitivity is excellent enabling the use of low-power laser sources, such as HeNe laser or laser diodes.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":"114 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Physics Quantum Electronics & Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qo.1997.qfc.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photorefractive materials have many potential photonic applications, including dynamic holographic storage and image processing. Recently, the new class of amorphous organic photorefractive materials has emerged, offering wide structural flexibility, easy processability, and low cost at very high performance levels. Progress in this field has led to absorption-limited complete diffraction for the readout of a hologram stored in materials of only 100-150 μm thickness and to extremely large net gain coefficients of more than 200 cm−1 compared to 40-50 cm−1 in the best inorganic photorefractive crystals known to date. These excellent properties occur in materials with low glass transition temperatures and result from refractive index modulations as large as Δn ≈ 10-2, mostly originating from a Kerr-type orientational birefringence rather than the electro-optic effect as in traditional photorefractive crystals. The materials can be adjusted for photorefractivity over the entire visible spectrum and in the near infrared. The sensitivity is excellent enabling the use of low-power laser sources, such as HeNe laser or laser diodes.
用于光学加工的光折变聚合物的优化
光折变材料具有许多潜在的光子应用,包括动态全息存储和图像处理。近年来,出现了一类新的非晶有机光折变材料,具有广泛的结构灵活性,易于加工,低成本和非常高的性能水平。该领域的进展已经导致了用于读取仅100-150 μm厚度的全息图的吸收限制完全衍射,以及与迄今为止已知的最佳无机光折变晶体的40-50 cm−1相比,超过200 cm−1的极大净增益系数。这些优异的性能发生在玻璃化转变温度较低的材料中,并且由于折射率调制高达Δn≈10-2,主要源于克尔型取向双折射,而不是传统光折变晶体中的电光效应。这种材料可以在整个可见光谱和近红外光谱上进行光折射率调整。灵敏度非常好,可以使用低功率激光源,如氦离子激光器或激光二极管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
22.20%
发文量
43
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信