R. Khan, Janani Surya, Maitreyee Roy, M. S. Swathi Priya, Sashwanthi Mohan, S. Raman, Akshay Raman, Abhishek Vyas, R. Raman
{"title":"Use of artificial intelligence algorithms to predict systemic diseases from retinal images","authors":"R. Khan, Janani Surya, Maitreyee Roy, M. S. Swathi Priya, Sashwanthi Mohan, S. Raman, Akshay Raman, Abhishek Vyas, R. Raman","doi":"10.1002/widm.1506","DOIUrl":null,"url":null,"abstract":"The rise of non‐invasive, rapid, and widely accessible quantitative high‐resolution imaging methods, such as modern retinal photography and optical coherence tomography (OCT), has significantly impacted ophthalmology. These techniques offer remarkable accuracy and resolution in assessing ocular diseases and are increasingly recognized for their potential in identifying ocular biomarkers of systemic diseases. The application of artificial intelligence (AI) has been demonstrated to have promising results in identifying age, gender, systolic blood pressure, smoking status, and assessing cardiovascular disorders from the fundus and OCT images. Although our understanding of eye–body relationships has advanced from decades of conventional statistical modeling in large population‐based studies incorporating ophthalmic assessments, the application of AI to this field is still in its early stages. In this review article, we concentrate on the areas where AI‐based investigations could expand on existing conventional analyses to produce fresh findings using retinal biomarkers of systemic diseases. Five databases—Medline, Scopus, PubMed, Google Scholar, and Web of Science were searched using terms related to ocular imaging, systemic diseases, and artificial intelligence characteristics. Our review found that AI has been employed in a wide range of clinical tests and research applications, primarily for disease prediction, finding biomarkers and risk factor identification. We envisage artificial intelligence‐based models to have significant clinical and research impacts in the future through screening for high‐risk individuals, particularly in less developed areas, and identifying new retinal biomarkers, even though technical and socioeconomic challenges remain. Further research is needed to validate these models in real‐world setting.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"30 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1506","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of non‐invasive, rapid, and widely accessible quantitative high‐resolution imaging methods, such as modern retinal photography and optical coherence tomography (OCT), has significantly impacted ophthalmology. These techniques offer remarkable accuracy and resolution in assessing ocular diseases and are increasingly recognized for their potential in identifying ocular biomarkers of systemic diseases. The application of artificial intelligence (AI) has been demonstrated to have promising results in identifying age, gender, systolic blood pressure, smoking status, and assessing cardiovascular disorders from the fundus and OCT images. Although our understanding of eye–body relationships has advanced from decades of conventional statistical modeling in large population‐based studies incorporating ophthalmic assessments, the application of AI to this field is still in its early stages. In this review article, we concentrate on the areas where AI‐based investigations could expand on existing conventional analyses to produce fresh findings using retinal biomarkers of systemic diseases. Five databases—Medline, Scopus, PubMed, Google Scholar, and Web of Science were searched using terms related to ocular imaging, systemic diseases, and artificial intelligence characteristics. Our review found that AI has been employed in a wide range of clinical tests and research applications, primarily for disease prediction, finding biomarkers and risk factor identification. We envisage artificial intelligence‐based models to have significant clinical and research impacts in the future through screening for high‐risk individuals, particularly in less developed areas, and identifying new retinal biomarkers, even though technical and socioeconomic challenges remain. Further research is needed to validate these models in real‐world setting.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.