M. Pourrousta, M. M. Larimi, M. Biglarian, P. Hedayati
{"title":"Liquid Jet Breakup and Penetration in a Gas Cross-Flow -An Experimental Study","authors":"M. Pourrousta, M. M. Larimi, M. Biglarian, P. Hedayati","doi":"10.1007/s40799-023-00668-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, an experimental platform is developed to study the behavior of the injected jet in a gas cross-flow applicable to different categories of fluid mechanics such as combustion. In all tests, water and air are used as jet and cross-flow gas, respectively. The main target of this work is to cover the higher range of momentum ratios and Weber numbers for the presentation of a more accurate equation for jet trajectory. To achieve a desirable scale of experiments, the range of momentum ratio is considered from 5 to 211 and the Weber number of gasses in all tests is between 1.1–19.1. For data mining and measurements, the shadowgraph method is used. It is shown that by increasing the momentum ratio (about 84%), the breakup point height is increased (about 94%). Three different types of breakups were observed in the tests. It observed that as the Weber number increases, the type of jet column mechanism changes. It also revealed that the type of breakup mechanism would not have a significant effect on the jet trajectory. In addition, it demonstrated that the momentum ratio parameter would have a decisive role in the direction of jet motion, and as the momentum ratio increases, the jet column height increases. Finally, an equation for the trajectory of jet flight under all test conditions is presented.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"449 - 459"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00668-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, an experimental platform is developed to study the behavior of the injected jet in a gas cross-flow applicable to different categories of fluid mechanics such as combustion. In all tests, water and air are used as jet and cross-flow gas, respectively. The main target of this work is to cover the higher range of momentum ratios and Weber numbers for the presentation of a more accurate equation for jet trajectory. To achieve a desirable scale of experiments, the range of momentum ratio is considered from 5 to 211 and the Weber number of gasses in all tests is between 1.1–19.1. For data mining and measurements, the shadowgraph method is used. It is shown that by increasing the momentum ratio (about 84%), the breakup point height is increased (about 94%). Three different types of breakups were observed in the tests. It observed that as the Weber number increases, the type of jet column mechanism changes. It also revealed that the type of breakup mechanism would not have a significant effect on the jet trajectory. In addition, it demonstrated that the momentum ratio parameter would have a decisive role in the direction of jet motion, and as the momentum ratio increases, the jet column height increases. Finally, an equation for the trajectory of jet flight under all test conditions is presented.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.