Multilevel Varying Coefficient Spatiotemporal Model.

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Surface Engineering Pub Date : 2022-12-01 Epub Date: 2021-11-19 DOI:10.1002/sta4.438
Yihao Li, Danh V Nguyen, Esra Kürüm, Connie M Rhee, Sudipto Banerjee, Damla Şentürk
{"title":"Multilevel Varying Coefficient Spatiotemporal Model.","authors":"Yihao Li, Danh V Nguyen, Esra Kürüm, Connie M Rhee, Sudipto Banerjee, Damla Şentürk","doi":"10.1002/sta4.438","DOIUrl":null,"url":null,"abstract":"<p><p>Over 785,000 individuals in the U.S. have end-stage renal disease (ESRD) with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients experience frequent hospitalizations. In order to identify risk factors of hospitalizations, we utilize data from the large national database, United States Renal Data System (USRDS). To account for the hierarchical structure of the data, with longitudinal hospitalization rates nested in dialysis facilities and dialysis facilities nested in geographic regions across the U.S., we propose a multilevel varying coefficient spatiotemporal model (M-VCSM) where region- and facility-specific random deviations are modeled through a multilevel Karhunen-Loéve (KL) expansion. The proposed M-VCSM includes time-varying effects of multilevel risk factors at the region- (e.g., urbanicity and area deprivation index) and facility-levels (e.g., patient demographic makeup) and incorporates spatial correlations across regions via a conditional autoregressive (CAR) structure. Efficient estimation and inference is achieved through the fusion of functional principal component analysis (FPCA) and Markov Chain Monte Carlo (MCMC). Applications to the USRDS data highlight significant region- and facility-level risk factors of hospitalizations and characterize time periods and spatial locations with elevated hospitalization risk. Finite sample performance of the proposed methodology is studied through simulations.</p>","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"13 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.438","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Over 785,000 individuals in the U.S. have end-stage renal disease (ESRD) with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients experience frequent hospitalizations. In order to identify risk factors of hospitalizations, we utilize data from the large national database, United States Renal Data System (USRDS). To account for the hierarchical structure of the data, with longitudinal hospitalization rates nested in dialysis facilities and dialysis facilities nested in geographic regions across the U.S., we propose a multilevel varying coefficient spatiotemporal model (M-VCSM) where region- and facility-specific random deviations are modeled through a multilevel Karhunen-Loéve (KL) expansion. The proposed M-VCSM includes time-varying effects of multilevel risk factors at the region- (e.g., urbanicity and area deprivation index) and facility-levels (e.g., patient demographic makeup) and incorporates spatial correlations across regions via a conditional autoregressive (CAR) structure. Efficient estimation and inference is achieved through the fusion of functional principal component analysis (FPCA) and Markov Chain Monte Carlo (MCMC). Applications to the USRDS data highlight significant region- and facility-level risk factors of hospitalizations and characterize time periods and spatial locations with elevated hospitalization risk. Finite sample performance of the proposed methodology is studied through simulations.

多层次可变系数时空模型。
在美国,超过 78.5 万人患有终末期肾病 (ESRD),其中约 70% 的患者需要接受维持生命的透析治疗。透析患者经常住院治疗。为了确定住院的风险因素,我们利用了大型国家数据库美国肾脏数据系统(USRDS)中的数据。为了考虑到数据的分层结构(纵向住院率嵌套于透析机构,透析机构嵌套于美国各地的地理区域),我们提出了多层次变化系数时空模型(M-VCSM),通过多层次卡胡宁-洛埃夫(KL)扩展对地区和机构的特定随机偏差进行建模。所提出的 M-VCSM 包括多层次风险因素在地区(如城市化和地区贫困指数)和设施(如患者人口构成)层面的时变效应,并通过条件自回归(CAR)结构纳入跨地区的空间相关性。通过融合功能主成分分析(FPCA)和马尔可夫链蒙特卡罗(MCMC),实现了高效的估计和推断。该方法在 USRDS 数据中的应用突出了重要的地区和设施级住院风险因素,并描述了住院风险升高的时间段和空间位置。通过模拟研究了所提方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信