Polynomial invariants of graphs on surfaces

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2010-12-22 DOI:10.4171/QT/35
R. Askanazi, S. Chmutov, C. Estill, J. Michel, P. Stollenwerk
{"title":"Polynomial invariants of graphs on surfaces","authors":"R. Askanazi, S. Chmutov, C. Estill, J. Michel, P. Stollenwerk","doi":"10.4171/QT/35","DOIUrl":null,"url":null,"abstract":"For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"4 1","pages":"77-90"},"PeriodicalIF":1.0000,"publicationDate":"2010-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/35","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.
曲面上图的多项式不变量
对于嵌入曲面的图,我们将图的循环矩阵和对偶图的键阵的许多组合参数与嵌入的拓扑参数联系起来。这将给出由M. Las Vergnas以组合方式定义的多项式的表达式,该多项式使用拟阵作为Krushkal多项式的专门化,使用曲面的第一个同调群中的辛结构定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信