R. Askanazi, S. Chmutov, C. Estill, J. Michel, P. Stollenwerk
{"title":"Polynomial invariants of graphs on surfaces","authors":"R. Askanazi, S. Chmutov, C. Estill, J. Michel, P. Stollenwerk","doi":"10.4171/QT/35","DOIUrl":null,"url":null,"abstract":"For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"4 1","pages":"77-90"},"PeriodicalIF":1.0000,"publicationDate":"2010-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/35","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
Abstract
For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M. Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.