Visual Coverage Control for Teams of Quadcopters via Control Barrier Functions

Riku Funada, María Santos, J. Yamauchi, T. Hatanaka, M. Fujita, M. Egerstedt
{"title":"Visual Coverage Control for Teams of Quadcopters via Control Barrier Functions","authors":"Riku Funada, María Santos, J. Yamauchi, T. Hatanaka, M. Fujita, M. Egerstedt","doi":"10.1109/ICRA.2019.8793477","DOIUrl":null,"url":null,"abstract":"This paper presents a coverage control strategy for teams of quadcopters that ensures that no area is left unsurveyed in between the fields of view of the visual sensors mounted on the quadcopters. We present a locational cost that quantifies the team’s coverage performance according to the sensors’ performance function. Moreover, the cost function penalizes overlaps between the fields of view of the different sensors, with the objective of increasing the area covered by the team. A distributed control law is derived for the quadcopters so that they adjust their position and zoom according to the direction of ascent of the cost. Control barrier functions are implemented to ensure that, while executing the gradient ascent control law, no holes appear in between the fields of view of neighboring robots. The performance of the algorithm is evaluated in simulated experiments.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"4 1","pages":"3010-3016"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a coverage control strategy for teams of quadcopters that ensures that no area is left unsurveyed in between the fields of view of the visual sensors mounted on the quadcopters. We present a locational cost that quantifies the team’s coverage performance according to the sensors’ performance function. Moreover, the cost function penalizes overlaps between the fields of view of the different sensors, with the objective of increasing the area covered by the team. A distributed control law is derived for the quadcopters so that they adjust their position and zoom according to the direction of ascent of the cost. Control barrier functions are implemented to ensure that, while executing the gradient ascent control law, no holes appear in between the fields of view of neighboring robots. The performance of the algorithm is evaluated in simulated experiments.
视觉覆盖控制四轴飞行器的团队通过控制屏障功能
本文提出了四轴飞行器团队的覆盖控制策略,以确保安装在四轴飞行器上的视觉传感器的视野之间没有区域未被测量。我们提出了一个位置成本,根据传感器的性能函数量化团队的覆盖性能。此外,成本函数惩罚不同传感器视野之间的重叠,目的是增加团队覆盖的区域。推导了四轴飞行器的分布式控制律,使四轴飞行器根据成本上升方向调整位置和变焦。实现控制屏障函数,确保在执行梯度上升控制律时,相邻机器人的视场之间不出现孔洞。仿真实验对该算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信