{"title":"Adaptive interpolation of multidimensional signals for compression on board an aircraft","authors":"N. Glumov, M. Gashnikov","doi":"10.18287/1613-0073-2019-2391-97-102","DOIUrl":null,"url":null,"abstract":"We consider the compression of multidimensional signals on the aircraft board. We describe the data of such signals as a hypercube, which is \"rotated\" in a special way. To compress this hypercube, we use a hierarchical compression method. As one of the stages of this method, we use an adaptive interpolation algorithm. The adaptive algorithm automatically switches between different interpolating functions at each signal point. We perform computational experiments in real-world multidimensional signals. Computational experiments confirm that the use of proposed adaptive interpolator allows increasing (up to 31%) the compression ratio of the “rotated” hypercube corresponding to multidimensional hyperspectral signals.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-97-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the compression of multidimensional signals on the aircraft board. We describe the data of such signals as a hypercube, which is "rotated" in a special way. To compress this hypercube, we use a hierarchical compression method. As one of the stages of this method, we use an adaptive interpolation algorithm. The adaptive algorithm automatically switches between different interpolating functions at each signal point. We perform computational experiments in real-world multidimensional signals. Computational experiments confirm that the use of proposed adaptive interpolator allows increasing (up to 31%) the compression ratio of the “rotated” hypercube corresponding to multidimensional hyperspectral signals.