Ahmad Naquash, Amjad Riaz, F. Yehia, Y. Chaniago, Hankwon Lim, Moonyong Lee
{"title":"Hydrogen Purification through a Membrane–Cryogenic Integrated Process: A 3 E’s (Energy, Exergy, and Economic) Assessment","authors":"Ahmad Naquash, Amjad Riaz, F. Yehia, Y. Chaniago, Hankwon Lim, Moonyong Lee","doi":"10.3390/gases3030006","DOIUrl":null,"url":null,"abstract":"Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can be adopted to produce high-purity H2; however, each standalone technology has its own pros and cons. Unlike standalone technology, the integration of technologies has shown significant potential for achieving high purity with a high recovery. In this study, a membrane–cryogenic process was integrated to separate H2 via the desublimation of carbon dioxide. The proposed process was designed, simulated, and optimized in Aspen Hysys. The results showed that the H2 was separated with a 99.99% purity. The energy analysis revealed a net-specific energy consumption of 2.37 kWh/kg. The exergy analysis showed that the membranes and multi-stream heat exchangers were major contributors to the exergy destruction. Furthermore, the calculated total capital investment of the proposed process was 816.2 m$. This proposed process could be beneficial for the development of a H2 economy.","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/gases3030006","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can be adopted to produce high-purity H2; however, each standalone technology has its own pros and cons. Unlike standalone technology, the integration of technologies has shown significant potential for achieving high purity with a high recovery. In this study, a membrane–cryogenic process was integrated to separate H2 via the desublimation of carbon dioxide. The proposed process was designed, simulated, and optimized in Aspen Hysys. The results showed that the H2 was separated with a 99.99% purity. The energy analysis revealed a net-specific energy consumption of 2.37 kWh/kg. The exergy analysis showed that the membranes and multi-stream heat exchangers were major contributors to the exergy destruction. Furthermore, the calculated total capital investment of the proposed process was 816.2 m$. This proposed process could be beneficial for the development of a H2 economy.
期刊介绍:
Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies.
Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd