{"title":"Hydrothermal stability of β-Cs2U2O7 and SrZrO3 in fluids","authors":"Sridhar Komarneni","doi":"10.1016/0022-1902(81)80626-4","DOIUrl":null,"url":null,"abstract":"<div><p>The stability of β-Cs<sub>2</sub>U<sub>2</sub>O<sub>7</sub> and SrZrO<sub>3</sub>, two possible phases of spent fuel elements, in hydrothermal fluids was investigated. β-Cs<sub>2</sub>U<sub>2</sub>O<sub>7</sub> was unstable under hydrothermal conditions of 100, 200 and 300°C/300 bars releasing substantial amounts of its Cs in deionized water and all of its Cs in a bittern (high-Mg and-Ca) brine. SrZrO<sub>3</sub> was found to be quite stable in deionized water but not in a bittern brine. For example, Sr released into solution decreased from 3.9 to 2.8% with an increase in temperature from 100 to 300°C probably because of better crystallization of SrZrO<sub>3</sub> at higher temperatures. In bittern brine, 23.3, 94.9 and 100% of Sr was released into solution at 100, 200 and 300°C respectively as a result of acidic conditions generated by the hydrolysis of MgCl<sub>2</sub> and formation of brucite. These results suggest that bittern brine which may be encountered in a salt repository is highly corrosive and may release all the Cs and Sr into solution under hydrothermal conditions if the containment were breached. The use of tailor-made overpacks or backfill barriers of highly stable and sorptive materials is essential especially in a salt repository in order to minimize the threat of highly hazardous Cs and Sr radionuclides finding their way into ground waters.</p></div>","PeriodicalId":16275,"journal":{"name":"Journal of Inorganic and Nuclear Chemistry","volume":"43 11","pages":"Pages 2833-2837"},"PeriodicalIF":0.0000,"publicationDate":"1981-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0022-1902(81)80626-4","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Nuclear Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0022190281806264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The stability of β-Cs2U2O7 and SrZrO3, two possible phases of spent fuel elements, in hydrothermal fluids was investigated. β-Cs2U2O7 was unstable under hydrothermal conditions of 100, 200 and 300°C/300 bars releasing substantial amounts of its Cs in deionized water and all of its Cs in a bittern (high-Mg and-Ca) brine. SrZrO3 was found to be quite stable in deionized water but not in a bittern brine. For example, Sr released into solution decreased from 3.9 to 2.8% with an increase in temperature from 100 to 300°C probably because of better crystallization of SrZrO3 at higher temperatures. In bittern brine, 23.3, 94.9 and 100% of Sr was released into solution at 100, 200 and 300°C respectively as a result of acidic conditions generated by the hydrolysis of MgCl2 and formation of brucite. These results suggest that bittern brine which may be encountered in a salt repository is highly corrosive and may release all the Cs and Sr into solution under hydrothermal conditions if the containment were breached. The use of tailor-made overpacks or backfill barriers of highly stable and sorptive materials is essential especially in a salt repository in order to minimize the threat of highly hazardous Cs and Sr radionuclides finding their way into ground waters.