Satellite ruling polynomials, DGA representations, and the colored HOMFLY-PT polynomial

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2018-02-28 DOI:10.4171/qt/133
C. Leverson, Dan Rutherford
{"title":"Satellite ruling polynomials, DGA representations, and the colored HOMFLY-PT polynomial","authors":"C. Leverson, Dan Rutherford","doi":"10.4171/qt/133","DOIUrl":null,"url":null,"abstract":"We establish relationships between two classes of invariants of Legendrian knots in $\\mathbb{R}^3$: Representation numbers of the Chekanov-Eliashberg DGA and satellite ruling polynomials. For positive permutation braids, $\\beta \\subset J^1S^1$, we give a precise formula in terms of representation numbers for the $m$-graded ruling polynomial $R^m_{S(K,\\beta)}(z)$ of the satellite of $K$ with $\\beta$ specialized at $z=q^{1/2}-q^{-1/2}$ with $q$ a prime power, and we use this formula to prove that arbitrary $m$-graded satellite ruling polynomials, $R^m_{S(K,L)}$, are determined by the Chekanov-Eliashberg DGA of $K$. Conversely, for $m\\neq 1$, we introduce an $n$-colored $m$-graded ruling polynomial, $R^m_{n,K}(q)$, in strict analogy with the $n$-colored HOMFLY-PT polynomial, and show that the total $n$-dimensional $m$-graded representation number of $K$ to $\\mathbb{F}_q^n$, $\\mbox{Rep}_m(K,\\mathbb{F}_q^n)$, is exactly equal to $R^m_{n,K}(q)$. In the case of $2$-graded representations, we show that $R^2_{n,K}=\\mbox{Rep}_2(K, \\mathbb{F}_q^n)$ arises as a specialization of the $n$-colored HOMFLY-PT polynomial.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"120 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

We establish relationships between two classes of invariants of Legendrian knots in $\mathbb{R}^3$: Representation numbers of the Chekanov-Eliashberg DGA and satellite ruling polynomials. For positive permutation braids, $\beta \subset J^1S^1$, we give a precise formula in terms of representation numbers for the $m$-graded ruling polynomial $R^m_{S(K,\beta)}(z)$ of the satellite of $K$ with $\beta$ specialized at $z=q^{1/2}-q^{-1/2}$ with $q$ a prime power, and we use this formula to prove that arbitrary $m$-graded satellite ruling polynomials, $R^m_{S(K,L)}$, are determined by the Chekanov-Eliashberg DGA of $K$. Conversely, for $m\neq 1$, we introduce an $n$-colored $m$-graded ruling polynomial, $R^m_{n,K}(q)$, in strict analogy with the $n$-colored HOMFLY-PT polynomial, and show that the total $n$-dimensional $m$-graded representation number of $K$ to $\mathbb{F}_q^n$, $\mbox{Rep}_m(K,\mathbb{F}_q^n)$, is exactly equal to $R^m_{n,K}(q)$. In the case of $2$-graded representations, we show that $R^2_{n,K}=\mbox{Rep}_2(K, \mathbb{F}_q^n)$ arises as a specialization of the $n$-colored HOMFLY-PT polynomial.
卫星统治多项式,DGA表示,和彩色HOMFLY-PT多项式
建立了$\mathbb{R}^3$中两类Legendrian节的不变量之间的关系:Chekanov-Eliashberg DGA和卫星统治多项式的表示数。对于正排列辫$\beta \subset J^1S^1$,我们给出了$K$卫星的$m$分级统治多项式$R^m_{S(K,\beta)}(z)$的表示数的精确公式,其中$\beta$专为$z=q^{1/2}-q^{-1/2}$, $q$是一个素数幂,我们用这个公式证明了任意$m$分级卫星统治多项式$R^m_{S(K,L)}$是由$K$的Chekanov-Eliashberg DGA确定的。相反,对于$m\neq 1$,我们引入了一个$n$ -colored $m$ -graded的统治多项式$R^m_{n,K}(q)$,与$n$ -colored HOMFLY-PT多项式严格类比,并证明了$K$到$\mathbb{F}_q^n$、$\mbox{Rep}_m(K,\mathbb{F}_q^n)$的$n$ -dimensional $m$ -graded的总表示数正好等于$R^m_{n,K}(q)$。在$2$ -分级表示的情况下,我们表明$R^2_{n,K}=\mbox{Rep}_2(K, \mathbb{F}_q^n)$是$n$ -彩色HOMFLY-PT多项式的专一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信