Renaud Detcherry, Efstratia Kalfagianni, Tian Yang
{"title":"Turaev–Viro invariants, colored Jones polynomials, and volume","authors":"Renaud Detcherry, Efstratia Kalfagianni, Tian Yang","doi":"10.4171/QT/120","DOIUrl":null,"url":null,"abstract":"We obtain a formula for the Turaev-Viro invariants of a link complement in terms of values of the colored Jones polynomial of the link. As an application we give the first examples for which the volume conjecture of Chen and the third named author\\,\\cite{Chen-Yang} is verified. Namely, we show that the asymptotics of the Turaev-Viro invariants of the Figure-eight knot and the Borromean rings complement determine the corresponding hyperbolic volumes. Our calculations also exhibit new phenomena of asymptotic behavior of values of the colored Jones polynomials that seem not to be predicted by neither the Kashaev-Murakami-Murakami volume conjecture and various of its generalizations nor by Zagier's quantum modularity conjecture. We conjecture that the asymptotics of the Turaev-Viro invariants of any link complement determine the simplicial volume of the link, and verify it for all knots with zero simplicial volume. Finally we observe that our simplicial volume conjecture is stable under connect sum and split unions of links.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 25
Abstract
We obtain a formula for the Turaev-Viro invariants of a link complement in terms of values of the colored Jones polynomial of the link. As an application we give the first examples for which the volume conjecture of Chen and the third named author\,\cite{Chen-Yang} is verified. Namely, we show that the asymptotics of the Turaev-Viro invariants of the Figure-eight knot and the Borromean rings complement determine the corresponding hyperbolic volumes. Our calculations also exhibit new phenomena of asymptotic behavior of values of the colored Jones polynomials that seem not to be predicted by neither the Kashaev-Murakami-Murakami volume conjecture and various of its generalizations nor by Zagier's quantum modularity conjecture. We conjecture that the asymptotics of the Turaev-Viro invariants of any link complement determine the simplicial volume of the link, and verify it for all knots with zero simplicial volume. Finally we observe that our simplicial volume conjecture is stable under connect sum and split unions of links.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.