Dansong Yue, Shuqi Shang, Kai Feng, Haiqing Wang, Xiaoning He, Zelong Zhao, Ning Zhang, Baiqiang Zuo, Dongwei Wang
{"title":"Research on the Model of a Navigation and Positioning Algorithm for Agricultural Machinery Based on the IABC-BP Network","authors":"Dansong Yue, Shuqi Shang, Kai Feng, Haiqing Wang, Xiaoning He, Zelong Zhao, Ning Zhang, Baiqiang Zuo, Dongwei Wang","doi":"10.3390/agriculture13091769","DOIUrl":null,"url":null,"abstract":"Improving the positioning accuracy and stability of a single BDS/INS sensor system in agricultural machinery is important for expanding the application scenarios of agricultural machinery. This paper proposes a navigation and positioning model based on an improved bee-colony-algorithm-optimized BP network (the IABC-BP model). The main aspect of this work involves introducing adaptive coefficients and speed adjustment coefficients that obey Gaussian distribution to ensure the balance between the rate of convergence, group flexibility, and searchability in the search process. The implicit adaptive layer formula of the BP network is proposed, and the BDS/INS navigation and positioning model for agricultural machinery is established using the IABC algorithm and the Kalman filter. Simulation tests and analyses of real-world application scenarios were conducted on the model, and the results showed that, compared with the original model, the performance of the model improved by 90.65%, 84.11%, and 25.96%, indicating that the proposed model has high accuracy and effectiveness. In the information fusion and compensation correction mode, the algorithm processes errors such as longitude and latitude within the target range and can achieve reliable navigation and positioning accuracy in a short period. At the same time, the model has good stability and generalization ability, and can be applied to other navigation scenarios in the future to expand its application scope.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":"124 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091769","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the positioning accuracy and stability of a single BDS/INS sensor system in agricultural machinery is important for expanding the application scenarios of agricultural machinery. This paper proposes a navigation and positioning model based on an improved bee-colony-algorithm-optimized BP network (the IABC-BP model). The main aspect of this work involves introducing adaptive coefficients and speed adjustment coefficients that obey Gaussian distribution to ensure the balance between the rate of convergence, group flexibility, and searchability in the search process. The implicit adaptive layer formula of the BP network is proposed, and the BDS/INS navigation and positioning model for agricultural machinery is established using the IABC algorithm and the Kalman filter. Simulation tests and analyses of real-world application scenarios were conducted on the model, and the results showed that, compared with the original model, the performance of the model improved by 90.65%, 84.11%, and 25.96%, indicating that the proposed model has high accuracy and effectiveness. In the information fusion and compensation correction mode, the algorithm processes errors such as longitude and latitude within the target range and can achieve reliable navigation and positioning accuracy in a short period. At the same time, the model has good stability and generalization ability, and can be applied to other navigation scenarios in the future to expand its application scope.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.