M. Koff, T. Gardner, E. Balaguer, C. Kawcak, C. McIlwraith, V. Mow
{"title":"Precise Quantitative Models of the Equine Articular Carpus Anatomy and Contact Areas","authors":"M. Koff, T. Gardner, E. Balaguer, C. Kawcak, C. McIlwraith, V. Mow","doi":"10.1115/imece2001/bed-23054","DOIUrl":null,"url":null,"abstract":"\n Osteochondral diseases occur within ail bones and cartilages of the equine carpus and can lead to loss of athletic use and occasionally catastrophic injury that necessitate euthanasia. The intensity and direction of stresses that lead to such injuries are unknown. Joint modeling is a commonly used technique in human orthopaedic research that allows investigators to determine the internal stresses of joints. Through the use of computer models, various scenarios, such as ligament damage, can be simulated and changes in the resulting joint surface stresses determined [1]. The purpose of this study was to experimentally obtain precise quantitative contact area data of the articular surfaces of the distal radius, the proximal and distal aspects of the radial carpal bone and the proximal aspect of the 3rd carpal bone of the equine carpus. These data provide normative contact and cartilage thickness values for the equine carpus that will facilitate the use of this joint as a large animal model for osteoarthritis studies. Furthermore, these experimental data will serve as the basis for the development and calibration of an equine carpus whole joint computer model.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Osteochondral diseases occur within ail bones and cartilages of the equine carpus and can lead to loss of athletic use and occasionally catastrophic injury that necessitate euthanasia. The intensity and direction of stresses that lead to such injuries are unknown. Joint modeling is a commonly used technique in human orthopaedic research that allows investigators to determine the internal stresses of joints. Through the use of computer models, various scenarios, such as ligament damage, can be simulated and changes in the resulting joint surface stresses determined [1]. The purpose of this study was to experimentally obtain precise quantitative contact area data of the articular surfaces of the distal radius, the proximal and distal aspects of the radial carpal bone and the proximal aspect of the 3rd carpal bone of the equine carpus. These data provide normative contact and cartilage thickness values for the equine carpus that will facilitate the use of this joint as a large animal model for osteoarthritis studies. Furthermore, these experimental data will serve as the basis for the development and calibration of an equine carpus whole joint computer model.