{"title":"Optical properties and electronic structures of CuSbS\n 2\n , CuSbSe\n 2\n , and CuSb(S\n 1−x\n Se\n x\n )\n 2\n solid solution","authors":"T. Wada, T. Maeda","doi":"10.1002/PSSC.201600196","DOIUrl":null,"url":null,"abstract":"To clarify electronic structures of CuSbS2, CuSbSe2, and CuSb(S1−xSex)2 solid solutions, these powder samples were synthesized by a mechanochemical process and post-heating. CuSbS2 and CuSbSe2 have indirect and direct band gaps, of which the direct band gaps are a little wider than the indirect band gaps. The ionization energies of CuSb(S1−xSex)2 (0.0 ≤ x ≤ 1.0) powders were measured by photoemission yield spectroscopy (PYS). Energy levels of the valence band maximum (VBM) of the CuSb(S1−xSex)2 samples were estimated from the ionization energies. The electron affinity, energy level of conduction band minimum (CBM), of the CuSb(S1−xSex)2 samples could also be determined by adding the value of the optical band gap to the energy level of the VBM. The energy level of the VBM of the CuSb(S1−xSex)2 system monotonically increases from −5.45 eV for CuSbS2 (x = 0.0) to −5.15 eV for CuSbSe2 (x = 1.0). On the other hand, the energy levels of the indirect CBM of the CuSb(S1−xSex)2 system slightly decrease from −4.05 eV for CuSbS2 to −4.11 eV for CuSbSe2. The energy levels of the direct CBM also slightly decrease from −4.00 eV for CuSbS2 to −4.07 eV for CuSbSe2. We show the band alignment of CuSbS2 (CuSbSe2)-based solar cells with a standard device structure of ZnO/CdS/CuSbS2 (CuSbSe2) absorber.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201600196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
To clarify electronic structures of CuSbS2, CuSbSe2, and CuSb(S1−xSex)2 solid solutions, these powder samples were synthesized by a mechanochemical process and post-heating. CuSbS2 and CuSbSe2 have indirect and direct band gaps, of which the direct band gaps are a little wider than the indirect band gaps. The ionization energies of CuSb(S1−xSex)2 (0.0 ≤ x ≤ 1.0) powders were measured by photoemission yield spectroscopy (PYS). Energy levels of the valence band maximum (VBM) of the CuSb(S1−xSex)2 samples were estimated from the ionization energies. The electron affinity, energy level of conduction band minimum (CBM), of the CuSb(S1−xSex)2 samples could also be determined by adding the value of the optical band gap to the energy level of the VBM. The energy level of the VBM of the CuSb(S1−xSex)2 system monotonically increases from −5.45 eV for CuSbS2 (x = 0.0) to −5.15 eV for CuSbSe2 (x = 1.0). On the other hand, the energy levels of the indirect CBM of the CuSb(S1−xSex)2 system slightly decrease from −4.05 eV for CuSbS2 to −4.11 eV for CuSbSe2. The energy levels of the direct CBM also slightly decrease from −4.00 eV for CuSbS2 to −4.07 eV for CuSbSe2. We show the band alignment of CuSbS2 (CuSbSe2)-based solar cells with a standard device structure of ZnO/CdS/CuSbS2 (CuSbSe2) absorber.