A Sparse Probabilistic Code Underlies the Limits of Behavioral Discrimination

Balaji Sriram, Lillian Li, A. Cruz-Martín, Anirvan Ghosh
{"title":"A Sparse Probabilistic Code Underlies the Limits of Behavioral Discrimination","authors":"Balaji Sriram, Lillian Li, A. Cruz-Martín, Anirvan Ghosh","doi":"10.1093/cercor/bhz147","DOIUrl":null,"url":null,"abstract":"Abstract The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50–100 neurons is sufficient to account for behavioral performance. Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of unreliable single units to generate reliable behavior.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"1 1","pages":"1040 - 1055"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhz147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50–100 neurons is sufficient to account for behavioral performance. Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of unreliable single units to generate reliable behavior.
稀疏概率码是行为区分极限的基础
作为感知基础的皮层编码必须使被试能够在与行为相关的时间尺度上感知世界。我们发现,在定向识别任务中,小鼠可以非常快速地整合视觉刺激(<100 ms)以达到平台表现。为了确定在这些时间尺度下表现的皮层活动特征,我们测量了小鼠视觉皮层在与该任务相关的时间尺度上的单单位反应。与长时间的高对比度刺激在单个神经元中引起可靠的活动相反,在感知阈值的刺激在初级视觉皮层中引起极其稀疏和不可靠的反应,因此单个神经元的活动不能可靠地报告方向。然而,跨神经元整合信息可以迅速提高性能。使用线性解码模型,我们估计整合超过50-100个神经元的信息足以解释行为表现。因此,在视觉感知的极限下,视觉系统集成了编码在不可靠的单个单元的概率发射中的信息,以产生可靠的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信