Experimental Characterization of the Mechanical Properties of Medical-Grade Dental Implants, Fabricated Using Vat-Photopolymerization Additive Manufacturing Process
{"title":"Experimental Characterization of the Mechanical Properties of Medical-Grade Dental Implants, Fabricated Using Vat-Photopolymerization Additive Manufacturing Process","authors":"Regan Raines, James B. Day, Roozbeh Salary","doi":"10.1115/msec2022-85436","DOIUrl":null,"url":null,"abstract":"\n The overarching goal of this research work is to fabricate mechanically-robust and dimensionally-accurate dental implants for the treatment of dental fractures, anomalies, and structural deformities with a focus on oral and maxillofacial surgery applications. In pursuit of this goal, the objective of the work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) scaffolds, composed of a medical-grade photopolymer resin, fabricated using digital light processing (DLP) process. DLP is a vat-photopolymerization additive manufacturing process; it has emerged as a high-resolution method for the fabrication of a broad spectrum of biological tissues and constructs for tissue engineering applications. However, the DLP process is intrinsically complex; the complexity of the process stems from complex physiochemical phenomena (such as UV light photopolymerization) as well as resin (photopolymer)-process interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional characteristics of fabricated dental scaffolds. Consequently, physics-based process and material characterization would be an inevitable need. In this study, several TPMS scaffolds (having complex internal geometries) were fabricated, based on a medical-grade photopolymer resin. The compression properties of the fabricated dental scaffolds were measured using a compression testing machine. In addition, the bioactivity of the scaffolds was assessed in a simulated body fluid (SBF). The outcomes of this study pave the way for the fabrication of complex dental implants with tunable medical and functional properties.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
The overarching goal of this research work is to fabricate mechanically-robust and dimensionally-accurate dental implants for the treatment of dental fractures, anomalies, and structural deformities with a focus on oral and maxillofacial surgery applications. In pursuit of this goal, the objective of the work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) scaffolds, composed of a medical-grade photopolymer resin, fabricated using digital light processing (DLP) process. DLP is a vat-photopolymerization additive manufacturing process; it has emerged as a high-resolution method for the fabrication of a broad spectrum of biological tissues and constructs for tissue engineering applications. However, the DLP process is intrinsically complex; the complexity of the process stems from complex physiochemical phenomena (such as UV light photopolymerization) as well as resin (photopolymer)-process interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional characteristics of fabricated dental scaffolds. Consequently, physics-based process and material characterization would be an inevitable need. In this study, several TPMS scaffolds (having complex internal geometries) were fabricated, based on a medical-grade photopolymer resin. The compression properties of the fabricated dental scaffolds were measured using a compression testing machine. In addition, the bioactivity of the scaffolds was assessed in a simulated body fluid (SBF). The outcomes of this study pave the way for the fabrication of complex dental implants with tunable medical and functional properties.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.