Molecular Tomography of the Quantum State by Time-Resolved Electron Diffraction

A. Ischenko
{"title":"Molecular Tomography of the Quantum State by Time-Resolved Electron Diffraction","authors":"A. Ischenko","doi":"10.1155/2013/236743","DOIUrl":null,"url":null,"abstract":"A procedure is described that can be used to reconstruct the quantum state of a molecular ensemble from time-dependent internuclear probability density functions determined by time-resolved electron diffraction. The procedure makes use of established techniques for evaluating the density matrix and the phase-space joint probability density, that is, the Wigner function. A novel expression for describing electron diffraction intensities in terms of the Wigner function is presented. An approximate variant of the method, neglecting the off-diagonal elements of the density matrix, was tested by analyzing gas electron diffraction data for N2 in a Boltzmann distribution and TRED data obtained from the 193 nm photodissociation of CS2 to carbon monosulfide, CS, at 20, 40, and 120 ns after irradiation. The coherent changes in the nuclear subsystem by time-resolved electron diffraction method determine the fundamental transition from the standard kinetics to the dynamics of the phase trajectory of the molecule and the tomography of molecular quantum state.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"3 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/236743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A procedure is described that can be used to reconstruct the quantum state of a molecular ensemble from time-dependent internuclear probability density functions determined by time-resolved electron diffraction. The procedure makes use of established techniques for evaluating the density matrix and the phase-space joint probability density, that is, the Wigner function. A novel expression for describing electron diffraction intensities in terms of the Wigner function is presented. An approximate variant of the method, neglecting the off-diagonal elements of the density matrix, was tested by analyzing gas electron diffraction data for N2 in a Boltzmann distribution and TRED data obtained from the 193 nm photodissociation of CS2 to carbon monosulfide, CS, at 20, 40, and 120 ns after irradiation. The coherent changes in the nuclear subsystem by time-resolved electron diffraction method determine the fundamental transition from the standard kinetics to the dynamics of the phase trajectory of the molecule and the tomography of molecular quantum state.
时间分辨电子衍射的量子态分子层析成像
描述了一种可用于从时间分辨电子衍射确定的随时间变化的核间概率密度函数重建分子系综量子态的方法。该程序利用已建立的技术来评估密度矩阵和相空间联合概率密度,即Wigner函数。提出了一种用维格纳函数描述电子衍射强度的新表达式。该方法的近似变体忽略了密度矩阵的非对角线元素,通过分析玻尔兹曼分布中N2的气体电子衍射数据和辐照后20、40和120 ns时CS2光解成一硫化碳(CS)的193 nm的trred数据进行了测试。时间分辨电子衍射方法在核子系统中的相干变化决定了从标准动力学到分子相轨迹动力学和分子量子态层析的基本转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信