Effects of thermal mass on transient thermal performance of concrete-based walls and energy consumption of an office building

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Benyamin Salehpour, M. Ghobadi, H. Ge, T. Moore
{"title":"Effects of thermal mass on transient thermal performance of concrete-based walls and energy consumption of an office building","authors":"Benyamin Salehpour, M. Ghobadi, H. Ge, T. Moore","doi":"10.1177/17442591231167609","DOIUrl":null,"url":null,"abstract":"Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17442591231167609","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.
热质量对办公楼混凝土基墙体瞬态热性能及能耗的影响
减少能源消耗和温室气体(GHG)排放是加拿大政府最近制定的清洁增长和气候变化框架的重要组成部分,该框架强调节能建筑的重要性。本文以某办公楼为例,研究了墙体组件内热质量和热质量层的布置对墙体瞬态热性能和能量性能的影响。考虑了三种气候条件,即以热为主、温带和以冷为主的气候条件。在能量需求评估方面,考虑了室内温度的两种情况:(i)全年室内温度保持在20℃;(ii)夏季白天的设定点为24℃,回撤值为35℃,冬季的设定点和回撤值分别为22℃和18℃。根据得到的衰减因子、达到准稳态条件所需的时间、热通量和室内表面温度的变化幅度以及能量需求对两种情况进行了比较。结果表明,在研究的情况下,热块状层不直接暴露于室内外气候条件的墙体,其减量因子最小,热通量和室内表面温度的变化幅度最小,达到准稳态条件所需的时间最长。另一方面,在能源性能方面,在调查的案例中,墙体表现最好,因为其热块状层暴露于内部和外部气候条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Physics
Journal of Building Physics 工程技术-结构与建筑技术
CiteScore
5.10
自引率
15.00%
发文量
10
审稿时长
5.3 months
期刊介绍: Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信