{"title":"Effects of thermal mass on transient thermal performance of concrete-based walls and energy consumption of an office building","authors":"Benyamin Salehpour, M. Ghobadi, H. Ge, T. Moore","doi":"10.1177/17442591231167609","DOIUrl":null,"url":null,"abstract":"Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"484 1","pages":"92 - 120"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17442591231167609","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.
期刊介绍:
Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.