{"title":"Adapting scientific workflow structures using multi-objective optimization strategies","authors":"I. Habib, A. Anjum, R. McClatchey, O. Rana","doi":"10.1145/2451248.2451252","DOIUrl":null,"url":null,"abstract":"Scientific workflows have become the primary mechanism for conducting analyses on distributed computing infrastructures such as grids and clouds. In recent years, the focus of optimization within scientific workflows has primarily been on computational tasks and workflow makespan. However, as workflow-based analysis becomes ever more data intensive, data optimization is becoming a prime concern. Moreover, scientific workflows can scale along several dimensions: (i) number of computational tasks, (ii) heterogeneity of computational resources, and the (iii) size and type (static versus streamed) of data involved. Adapting workflow structure in response to these scalability challenges remains an important research objective. Understanding how a workflow graph can be restructured in an automated manner (through task merge, for instance), to address constraints of a particular execution environment is explored in this work, using a multi-objective evolutionary approach. Our approach attempts to adapt the workflow structure to achieve both compute and data optimization. The question of when to terminate the evolutionary search in order to conserve computations is tackled with a novel termination criterion. The results presented in this article demonstrate the feasibility of the termination criterion and demonstrate that significant optimization can be achieved with a multi-objective approach.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"24 1","pages":"4:1-4:21"},"PeriodicalIF":2.2000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2451248.2451252","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 17
Abstract
Scientific workflows have become the primary mechanism for conducting analyses on distributed computing infrastructures such as grids and clouds. In recent years, the focus of optimization within scientific workflows has primarily been on computational tasks and workflow makespan. However, as workflow-based analysis becomes ever more data intensive, data optimization is becoming a prime concern. Moreover, scientific workflows can scale along several dimensions: (i) number of computational tasks, (ii) heterogeneity of computational resources, and the (iii) size and type (static versus streamed) of data involved. Adapting workflow structure in response to these scalability challenges remains an important research objective. Understanding how a workflow graph can be restructured in an automated manner (through task merge, for instance), to address constraints of a particular execution environment is explored in this work, using a multi-objective evolutionary approach. Our approach attempts to adapt the workflow structure to achieve both compute and data optimization. The question of when to terminate the evolutionary search in order to conserve computations is tackled with a novel termination criterion. The results presented in this article demonstrate the feasibility of the termination criterion and demonstrate that significant optimization can be achieved with a multi-objective approach.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.