{"title":"Prevalence and Transmission of multi drug resistance gene in Staphylococcus aureus.","authors":"T. Chakraborty, B. Patra, Sutripto Ghosh","doi":"10.2174/2211550112666221117091252","DOIUrl":null,"url":null,"abstract":"\n\nAntibiotics are antimicrobial substances that are commonly used to treat humans, animals, and fish, as well as to research susceptibility patterns in a variety of bacteria. With the rising number of diseases and the emergence of new infections, many drugs for humans, animals, fish, and plants are being developed. However, with the development of pharmaceuticals came the advent of a phenomenon known as drug resistance, which has alarmed scientists and researchers all around the world. The building of resistance in genes that code for specific drugs, plasmids, or transposons, the action of multidrug efflux pumps, changes in chromosomal genes, or the Staphylococci cassette chromosome can all produce it. Staphylococcus aureus, the most common Gram-positive bacteria, has a multidrug-resistant phenotype that reveals its pathogenicity. Staphylococcus sp. possesses a variety of transmissible genes that cause them to be resistant to treatments such as antibiotics. The discovery of antibiotics by Alexander Fleming has long been a boon in the fight against bacterial illnesses. Drug-resistant bacteria have emerged as a result of antibiotic overuse and suboptimal usage, attracting the attention of scientists throughout the world. Therefore, as a first step in combating drug-resistant bacteria, it is obvious that widespread efforts to curb antibiotic abuse are required. This review focuses on and brings to society the prevalence of different multidrug resistant genes in Staphylococcus aureus and their transmission.\n","PeriodicalId":10850,"journal":{"name":"Current Biotechnology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biotechnology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2174/2211550112666221117091252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Antibiotics are antimicrobial substances that are commonly used to treat humans, animals, and fish, as well as to research susceptibility patterns in a variety of bacteria. With the rising number of diseases and the emergence of new infections, many drugs for humans, animals, fish, and plants are being developed. However, with the development of pharmaceuticals came the advent of a phenomenon known as drug resistance, which has alarmed scientists and researchers all around the world. The building of resistance in genes that code for specific drugs, plasmids, or transposons, the action of multidrug efflux pumps, changes in chromosomal genes, or the Staphylococci cassette chromosome can all produce it. Staphylococcus aureus, the most common Gram-positive bacteria, has a multidrug-resistant phenotype that reveals its pathogenicity. Staphylococcus sp. possesses a variety of transmissible genes that cause them to be resistant to treatments such as antibiotics. The discovery of antibiotics by Alexander Fleming has long been a boon in the fight against bacterial illnesses. Drug-resistant bacteria have emerged as a result of antibiotic overuse and suboptimal usage, attracting the attention of scientists throughout the world. Therefore, as a first step in combating drug-resistant bacteria, it is obvious that widespread efforts to curb antibiotic abuse are required. This review focuses on and brings to society the prevalence of different multidrug resistant genes in Staphylococcus aureus and their transmission.