{"title":"BOUNDED COHOMOLOGY AND BINATE GROUPS","authors":"Francesco Fournier-Facio, C. Loeh, M. Moraschini","doi":"10.1017/S1446788722000106","DOIUrl":null,"url":null,"abstract":"Abstract A group is boundedly acyclic if its bounded cohomology with trivial real coefficients vanishes in all positive degrees. Amenable groups are boundedly acyclic, while the first nonamenable examples are the group of compactly supported homeomorphisms of \n$ {\\mathbb {R}}^{n}$\n (Matsumoto–Morita) and mitotic groups (Löh). We prove that binate (alias pseudo-mitotic) groups are boundedly acyclic, which provides a unifying approach to the aforementioned results. Moreover, we show that binate groups are universally boundedly acyclic. We obtain several new examples of boundedly acyclic groups as well as computations of the bounded cohomology of certain groups acting on the circle. In particular, we discuss how these results suggest that the bounded cohomology of the Thompson groups F, T, and V is as simple as possible.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"108 1","pages":"204 - 239"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract A group is boundedly acyclic if its bounded cohomology with trivial real coefficients vanishes in all positive degrees. Amenable groups are boundedly acyclic, while the first nonamenable examples are the group of compactly supported homeomorphisms of
$ {\mathbb {R}}^{n}$
(Matsumoto–Morita) and mitotic groups (Löh). We prove that binate (alias pseudo-mitotic) groups are boundedly acyclic, which provides a unifying approach to the aforementioned results. Moreover, we show that binate groups are universally boundedly acyclic. We obtain several new examples of boundedly acyclic groups as well as computations of the bounded cohomology of certain groups acting on the circle. In particular, we discuss how these results suggest that the bounded cohomology of the Thompson groups F, T, and V is as simple as possible.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society