V. H. Mai, Chi Dung Duong, H. Le, L. Tran, A. Jaffré, Emmanuel Blanc, O. Schneegans
{"title":"Simple Design of Double-Layer Antireflection Coating for Er-Doped Glass Laser Application","authors":"V. H. Mai, Chi Dung Duong, H. Le, L. Tran, A. Jaffré, Emmanuel Blanc, O. Schneegans","doi":"10.15625/0868-3166/17137","DOIUrl":null,"url":null,"abstract":"In an Erbium-doped glass laser resonator, parasitic light oscillations (yielding a lowering of the output laser beam power) may be avoided by deposition of well-adapted antireflection coatings on the edges of the active glass medium. However, towards laser application, efficient double-layers are scarce in literature. Here, we propose a simple design of double-layer (total thickness < 490nm) composed of thin films of MgF2 and Al2O3, materials that are easy to deposit by electron beam evaporation. Such coating design allows a calculated reflectance to be lower than 0.01% in the considered 1530-1570nm Near-Infrared range.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/17137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In an Erbium-doped glass laser resonator, parasitic light oscillations (yielding a lowering of the output laser beam power) may be avoided by deposition of well-adapted antireflection coatings on the edges of the active glass medium. However, towards laser application, efficient double-layers are scarce in literature. Here, we propose a simple design of double-layer (total thickness < 490nm) composed of thin films of MgF2 and Al2O3, materials that are easy to deposit by electron beam evaporation. Such coating design allows a calculated reflectance to be lower than 0.01% in the considered 1530-1570nm Near-Infrared range.