Image segmentation by level set analysis

Badrinarayan Raghunathan, S. Acton
{"title":"Image segmentation by level set analysis","authors":"Badrinarayan Raghunathan, S. Acton","doi":"10.1109/ACSSC.2000.910648","DOIUrl":null,"url":null,"abstract":"This paper describes an automated image segmentation technique that subdivides regions of homogeneous texture. The method utilizes a level set analysis of scaled Gabor filter responses. Scaling is achieved via an area morphological process. Each scaled, filtered image is examined to locate important connected components based on minimal total internal variance and maximal edge localization. The candidate segments are selected using a granulometry of the gradient magnitude evaluated at the level lines of the connected components. The level set analysis avoids the high computational cost associated with conventional level set approaches by sampling only the significant level sets for processing. The target application for this segmentation technique is content based image retrieval.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"63 1","pages":"916-920 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes an automated image segmentation technique that subdivides regions of homogeneous texture. The method utilizes a level set analysis of scaled Gabor filter responses. Scaling is achieved via an area morphological process. Each scaled, filtered image is examined to locate important connected components based on minimal total internal variance and maximal edge localization. The candidate segments are selected using a granulometry of the gradient magnitude evaluated at the level lines of the connected components. The level set analysis avoids the high computational cost associated with conventional level set approaches by sampling only the significant level sets for processing. The target application for this segmentation technique is content based image retrieval.
基于水平集分析的图像分割
本文描述了一种对均匀纹理区域进行细分的自动图像分割技术。该方法利用尺度Gabor滤波器响应的水平集分析。缩放是通过面积形态学过程实现的。基于最小的总内部方差和最大的边缘定位,对每个缩放后的滤波图像进行检查,以定位重要的连接组件。使用在连接组件的水平线上评估的梯度量级的粒度法选择候选段。水平集分析避免了与传统水平集方法相关的高计算成本,因为它只对显著水平集进行采样处理。该分割技术的目标应用是基于内容的图像检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信